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Abstract

This paper describes some preliminary investigations of assimilating cloud-affected infrared radiances with the
use of cloud fraction as a new control variable. The advancedradiative transfer model RTTOV-CLD is used
to simulate IASI spectra directly from a short range forecast field including liquid water content, ice water
content and cloud fraction profiles. This approach enables amore realistic representation of clouds and is
able to deal with multi-layer clouds by taking into account cloud scattering. The approach is illustrated with
1D-Var retrievals in the context of observing system simulation experiments. The results are promising and
encouraging with the 1D-Var being able to decrease or increase the cloud amounts to reduce the observation
minus background departures.

1 Introduction

All numerical weather prediction (NWP) centres intend to increase the number of satellite observations as-
similated in cloudy conditions. Indeed, with about 80% of satellite data at least partially covered by clouds,
the assimilation of infrared (IR) radiances is very restrictive if only clear scenes are assimilated. This under-
exploitation of IR satellite data, mainly caused by aggressive thinning, is also explained by the rejection of
cloud-affected radiances during the assimilation processbecause of large innovations (observation minus back-
ground) due to cloud mislocation or deficiencies in the modelling of clouds, either in radiative transfer (RT)
models or NWP models. However, the high correlation betweencloud cover and meteorologically sensitive ar-
eas underlines the need to use infrared observations in presence of clouds (McNally (2002), Fourrié and Rabier
(2004)). The all-sky approach used at the European Centre for Medium Range Weather Forecasts (ECMWF)
for the assimilation of microwave data (Geer et al (2008), Bauer et al (2010), Geer et al (2010)) was a signif-
icant advance towards the assimilation of cloud and precipitation affected radiances. However, in the IR, an
incorrect modelling of clouds leads to increased errors in the radiative transfer (RT) calculations which is very
sensitive to cloud microphysical properties, making the assimilation of cloud-affected infrared radiances more
difficult.

Despite the difficulty in assimilating IR satellite data in cloudy conditions, most NWP centres have progressed
in the use of these data. All the existing approaches use a simplified modelling of clouds which are assumed to
be represented by single layers of opaque clouds with a cloudemissivity equal to one. Clouds are characterized
by a cloud top pressure (CTOP) and an effective cloud fraction (Ne) (Pavelin et al. (2008), Pangaud et al.
(2009), McNally (2009), Guidard et al. (2011), Lavanant et al. (2011)). However, with most of these tech-
niques, too few data are assimilated due to the restriction to opaque scenes and channels with weak cloud
sensitivity.

The aim of this work was to explore new assimilation techniques based on an explicit analysis of microphysical
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variables (liquid water content, ice water content and cloud fraction) for the simulation and the assimilation of
cloud-affected IR radiances. New convective scale models (such as the Météo France AROME and Met Office
UKV models) produce forecasts of cloud variables with a highresolution. These profiles can be used in the
advanced radiative transfer model RTTOV-CLD (Hocking et al. (2010)) to simulate cloudy IASI spectra taking
into account multi-layer and mixed-phase clouds but also cloud scattering. The study of Martinet et al (2013,a)
with the AROME model has already shown encouraging results for the inclusion of liquid water content and
ice water content in the control vector of the NWP SAF Met Office 1D-Var code (Pavelin and Collard (2009)).

This study follows this work by exploring the possibility ofadding the cloud fraction as an additional state
vector variable with liquid water content and ice water content. The inclusion of the cloud fraction (cfrac) is
important as the RT model RTTOV-CLD is highly sensitive to the cloud fraction and to obtain a cloud fraction
profile consistent with the analyzed liquid water content (lwc) and ice water content (iwc) profiles. It has been
decided to add the cloud fraction in the control vector of the1D-Var instead of using a diagnostic relationship to
derive the cloud fraction from the analyzed cloud variables. In fact, the use of a diagnostic relationship would
couple the cloud fraction and the hydrometeors strongly with a formulation from the numerical weather pre-
diction model that is certainly not appropriate to fit IASI observations. Thus, we carried out one-dimensional
variational (1D-Var) retrievals of cloud variables (lwc, iwc, cloud fraction) with an extended version of the
NWP SAF 1D-Var code. To evaluate the cloudy retrievals, synthetic IASI observations were used in the man-
ner of Observing System Simulation Experiments (OSSE). Cloudy profiles from the French convective scale
model AROME were used to simulate the IASI observations.

Three cloudy profiles representative of semi-transparent cloud, high opaque cloud and low opaque cloud were
used to investigate three main questions:

• Are we able to properly modify the cloud variables of an already existing cloud layer ?

• Are we able to properly create new cloudy layers in clear atmospheric layers in the background ?

• Can we generalize these results on a global dataset of cloudyprofiles ?

In section 2, the NWP SAF 1D-Var code is presented as well as the background error covariance matrix used
for this study. Section 3 presents 1D-Var retrievals of three atmospheric profiles where the clouds have been
modified in cloudy layers already existing in the background. Section 4 presents some 1D-Var retrievals for
which the cloud has to be moved in atmospheric layers not covered by clouds in the background. In these two
sections, the 1D-Var retrievals have been carried out on three atmospheric profiles: a high opaque cloud, a low
liquid cloud and a semi-transparent ice cloud. Section (5) generalizes the results of the previous sections by
performing 1D-Var retrievals on a large sample of atmospheric profiles. The root-mean-square errors of the
analysis and the background against the ‘truth’ are compared. This paper concludes with a summary of the
main findings and future prospects.

2 Experimental framework

2.1 1D-Var framework

The 1D-Var analysis described here is based on linear optimal estimation but some non-linearities are taken
into account through the update of the Jacobians at each iteration. The best approximation of the atmospheric
statex is a combination of a vector of observationsy and a background statexb from a short-range forecast.
The observations are linked to the atmospheric state by an observation operatorH including interpolations from
the observation space to the model space and a radiative transfer model. The best linear unbiased estimation of
the atmospheric state is obtained by minimizing the cost function:
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J(x) =
1

2
(x − xb)TB−1(x − xb) + (2.1)

1

2
(y −H(x))T R−1(y −H(x))

whereR is the measurement error covariance matrix,B is the background-error covariance matrix,T is the
transpose operator and−1 the inverse operator. During the minimization process, a Levenberg-Marquardt
descent algorithm is applied.

2.2 Cloudy background error covariance matrix

To optimize the assimilation of cloudy observations, appropriate background error covariances that include
couplings with the other model variables should be considered. The computation of cloudyB matrices is still
an active area of research but a cloudyB matrix for temperature, humidity, liquid water content andice water
content was previously computed and tested for the AROME model (Martinet et al (2013,a)).
For that purpose, background-error covariances have been diagnosed for cloudy areas with a method similar
to the one described by Montmerle and Berre (2010) to diagnose forecast errors in precipitating areas. The
background-error statistics were derived from an AROME ensemble assimilation, that considers explicit obser-
vation perturbations and implicit background perturbations through the cycling, coupled with the operational
ensemble assimilation at global scale AEARP (Desroziers etal. (2008)). They were calculated from a set of 18
convective cases observed during the months of July, Augustand September 2009. For separating cloudy and
clear areas, a geographical cloud mask has been applied to the forecast differencesǫbkl = xbk − xbl between
members(k, l). For each member, only profiles whose vertically integratedcloud contents exceed 0.01 g.kg−1

have been taken into account to perform the statistics. A similar approach to Michel et al. (2011), which uses
an extension of the multivariate formalism proposed by Berre (2000), has been chosen for the forecast errors of
ql and qi, allowing couplings with errors of temperature and of unbalanced specific humidity, the temperature
being univariate.

This cloudyB matrix was not available for the cloud fraction. It was decided to use our AROME profile
dataset to compute the standard deviation of the cloud fraction for each atmospheric level. These standard
deviation values were used as the diagonal elements of the cloud fraction background error. The dataset used
for the computation of the standard deviation contains bothhigh clouds and low clouds without any distinction
between semi-transparent and opaque clouds. The aim was to obtain a static matrix that can be used for most
cloudy cases. We also decided to add a small correlation of 0.1 between the cloud fraction and the liquid water
content and the ice water content. To have some consistency between the increments in adjacent levels, vertical
correlations that follow a Gaussian distribution were added. The number of adjacent levels that are correlated
between each other was decided after testing differentB matrices. The value of 12 vertical levels correlated was
found to be the best for the retrieval of the different cloud variable: lwc, iwc, cfrac. Figure 1 shows the entireB
matrix with the different block of covariances. The variables in the state vector are composed of 60 levels and
are sorted in this order: temperature, humidity, liquid water content, ice water content and cloud fraction. The
standard deviation of background errors for each cloud variable is presented in figure 2.

3 Modification of cloudy layers already existing in the background

Our first study was to evaluate the feasibility of modifying at the same time the three cloud variables (lwc,
iwc, cloud fraction) in cloudy layers already existing in the background. This study was necessary to give
preliminary answers about the relevance of the inclusion ofthe cloud fraction in the state vector.
3-hour forecasts from the convective scale model AROME are used to provide the ‘truth’ (xt) used as the
reference. These true profiles are perturbed to provide the background profile used in the 1D-Var and the IASI
observationy:

y = H(xt) + ǫoR
1

2 (3.1)
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Figure 1: Cloudy background error covariance matrix used inthe 1D-Var. The state vector contains the 60
vertical levels of each variable in the following order: temperature (t), humidity (q), liquid water content (ql),
ice water content (qi) and cloud fraction (cfrac).

wherey is the perturbed observation,R is the observation error covariance matrix,H(xt) is the observation
simulated from the ‘true’ profile, andǫo is a random vector drawn from a Gaussian distribution with zero mean
and unit standard deviation. TheR matrix is assumed diagonal with values constructed from theintrumental
noise provided by CNES. A constant error is also added to takeinto account the radiative transfer model error
(0.2 K for liquid cloud and 0.5 K for ice cloud).
The 1D-Var retrievals have been performed with a subset of 480 IASI channels. This subset is composed of
the first 346 IASI channels of the operational channel subsetused at ECMWF (Collard and McNally (2009)).
These channels were chosen for their properties in clear conditions. A subset of 134 new channels were added
for their sensitivity to cloud variables (Martinet et al (2013,b)).
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Figure 2: Background error for cloud fraction (left panel),ice water content (middle panel) and liquid water
content (right panel)

We studied three cloudy profiles: one low liquid cloud, one semi-transparent ice cloud and one opaque ice
cloud. For each cloudy profile, the ‘true’ AROME profiles are perturbed to increase the cloud fraction by 0.1
and the humidity and the cloud variables by 10% in the background profile. The observation minus background
departures are thus positive meaning an excessive cloud amount in the background compared to the observa-
tion.

3.1 1D-Var retrievals

The first example is a low liquid cloud shown in figure 3. In thisfigure, observation minus background (O-B)
and observation minus analysis (O-A) departures, profiles of background, true and analysis of humidity, cloud
water contents and cloud fraction are shown. The O-B departures are decreased as expected by the 1D-Var
in window channels sensitive to clouds. In order to remove the excess cloud, the 1D-Var decreases the liquid
water content but the increment is slightly too big. However, the cloud fraction is decreased from 1 to 0.9 in the
highest cloudy layer in good agreement with the ‘true’ profile. Some non zero values appear above and below
the cloud after the analysis due to the vertical correlations used in the static cloudyB matrix. This spread of
low clouds under an inversion layer can be problematic in an operational context. The use of a state-dependent
B matrix would help to stop the spreading of the cloudy layer. We can also think about penalizing the cost
function when clouds are created in a dry atmospheric layer but this study was beyond the scope of the mission.

The second example is an opaque cloud with mixed-phase layers containing both liquid water and ice (fig-
ure 4). Large O-B departures are observed with values up to 8 Kfor longwave window channels and 15 K
for shortwave window channels. These values are successfully decreased by the analysis with O-A departures
much closer to zero. The ice water content profile is also effectively decreased to fit the ‘true’ profile. The cloud
fraction analysis is also better than the background for both cloudy layers. However, the cloud fraction analysis
fits better the ‘true’ profile in the highest cloudy layer (200-450 hPa) than the lowest layer. The modification of
the cloud fraction associated to the liquid cloud layer located under 800 hPa is due to some transparency of the
cloud. Even if this cloud was classified as opaque because of an effective cloud fraction value above 0.9, the
cloud is not dense enough (10−5kg.kg−1 ) to avoid the contamination by low levels. This is illustrated by the
cloud fraction Jacobians in figure 5 after multiplying the ice water content profile by 10. We can notice that the
Jacobians calculated with the initial cloud fraction profile (left panel) have significant values around 900 hPa
corresponding to the liquid cloud layer under the ice cloud layer. If we multiply the ice water content profile
by 10 (right panel) making the cloud more opaque (10−4kg.kg−1 instead of 10−5kg.kg−1 ), this sensitivity to
low levels disappear.

The third example is a semi-transparent ice cloud (figure 6).Large O-B departures are observed with val-
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ues up to 7 K for longwave window channels. The minimization seems to work well with O-A departures much
smaller than the O-B departures. The ice water content profile is decreased effectively at the cloud top (200 hPa)
but the increment is slightly too big at 250 hPa. In order to remove the excess cloud, the cloud fraction is well
reduced by the 1D-Var even if the increment should be bigger for a better fit of the ‘true’ profile.
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Figure 3: Low liquid cloud experiment: O-B and O-A (top left panel), humidity (top right panel), liquid water
(bottom left) and cloud fraction profiles (bottom right) forthe background (black line), the ‘true’ profile (blue
line) and the analysis (red line).

3.2 Linear error analysis of IASI cloudy radiances

In order to understand the 1D-Var increments shown in the previous section, as well as the information con-
tent of IASI cloudy radiances, the analysis error covariance matrixA of the optimal state obtained after the
minimization of the cost function has been calculated. TheA matrix is expressed by:

A−1 = B−1 +HTR−1H (3.2)

whereH is the Jacobian matrix (partial derivatives of the brightness temperature with respect to each control
variable). The Jacobians with respect to each control variable (temperature, humidity, liquid water content, ice
water content and cloud fraction) for the optimal state are shown in figure 7.
For the opaque cloud, temperature and humidity Jacobians are significant above 400 hPa associated to the first
ice cloud layer. The Jacobians with respect to the liquid water content are significant at atmospheric layers
covered by the low liquid cloud. The sensitivity at 500 hPa isdue to the creation of non negative liquid water
content during the minimization by the cross-correlationsbetween variables explained in theB matrix. The
Jacobians with respect to the cloud fraction are significantat levels associated to the ice cloud (200 to 400 hPa)
and the liquid cloud (900 hPa).
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Figure 4: Opaque cloud experiment: O-B and O-A (top left panel), humidity (top right panel), ice water content
(bottom left) and cloud fraction profiles (bottom right) forthe background (black line), the ‘true’ profile (blue
line) and the analysis (red line).
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Figure 5: Opaque cloud experiment: cloud fraction Jacobians computed with the initial ice water content profile
(left panel) and the initial ice water content after the multiplication by 10 (right panel).

For the semi-transparent cloud, the temperature Jacobiansare significant up to 600 hPa showing a higher trans-
parency compared to the previous cloud. The Jacobians with respect to the liquid water content are significant
on the lowest atmospheric levels (under 900 hPa) due to the creation of a new liquid cloud layer by theB matrix
cross-correlations. The Jacobians with respect to the ice water content and the cloud fraction are significant at

7



500 1000 1500 2000 2500
−4

−2

0

2

4

6

8

10

Wavenumber

B
rig

ht
ne

ss
 T

em
pe

ra
tu

re
 [K

]

 

 

O−B
O−A

0 0.002 0.004 0.006 0.008 0.01

0

200

400

600

800

1000

Humidity

P
re

ss
ur

e 
[h

P
a]

 

 

Background
Retrieval
True

0 0.5 1 1.5 2

x 10
−5

0

200

400

600

800

1000

Ice Water Content

P
re

ss
ur

e 
[h

P
a]

 

 

Background
Retrieval
True

0 0.2 0.4 0.6 0.8 1

0

200

400

600

800

1000

Cloud fraction

P
re

ss
ur

e 
[h

P
a]

 

 

Background
Retrieval
True

Figure 6: Semi-transparent ice cloud experiment: O-B and O-A (top left panel), humidity (top right panel), ice
water content (bottom left) and cloud fraction profiles (bottom right) for the background (black line), the ‘true’
profile (blue line) and the analysis (red line).

the cloud top (250 hPa).
For the low cloud, the Jacobians with respect to the liquid water content are associated to the liquid layer be-
tween 700 and 850 hPa and to new layers that appeared at 600 hPawith theB matrix cross-correlations. The
cloud fraction Jacobians are the most sensitive to levels just above 800 hPa associated to the cloud fraction and
liquid water content maxima.
For all these cases, it is worth noting that the cloud contentJacobians are the most sensitive to the upper part of
the cloud whereas the cloud fraction Jacobians peak at the level of maximum cloud fraction and cloud contents.

Figure 8 shows the cloud fraction analysis errors (diagonalelements of theA matrix ) compared to the cloud
fraction background errors (diagonal elements of theB matrix). Cloud fraction errors are mainly reduced at
cloud levels. For the opaque cloud, the reduction is significant for both the ice cloud layer and the liquid cloud
layer. For the semi-transparent cloud, the reduction is limited to the upper troposphere where the ice cloud is.
For the low cloud, the main reduction is observed at 800 hPa where the cloud is with some improvement at the
upper troposphere (400 hPa) due to the appearance of non-zero cloud fraction values associated to a new ice
cloud layer created by theB matrix cross-correlations .

3.3 Conclusion

In this section, we have shown encouraging results for the inclusion of the cloud variables (liquid water content,
ice water content and cloud fraction) in the control vector of the 1D-Var. The 1D-Var correctly decreases the
cloud amounts to reduce the O-B departures according to the state dependent cloud Jacobians. However, we
noticed some convergence problem when the cloud fraction isincluded in the control variables more especially
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Figure 7: Jacobians with respect to each control variable from left to right: temperature, humidity, liquid water
content, ice water content and cloud fraction.

for opaque clouds for which the fraction of profiles reachingconvergence was decreased by 40% (only 33%
instead of 72%). The 1D-Var convergence depends on three constraints :

abs(
Jcost− Jold

Jcost
) < 9.9 × 10−3 (3.3)

whereJcost is the new cost function calculated with the new profile andJold is the old cost function.
γ

γold
< 1.01 (3.4)
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Figure 8: Cloud fraction analysis errors (red line) and background errors (dotted line) for the opaque cloud (left
panel), the semi-transparent cloud (middle panel) and the low cloud (right panel).

whereγ is the new gamma factor of the Levenberg-Marquardt minimization andγold the previous gamma
factor.

∇Jcost < Jcost2 (3.5)

where∇Jcost is the gradient of the cost function. To obtain a better convergence rate for opaque clouds, the
constraint on the gradient of the cost function was removed to reach 84% of convergence. We did not notice
a significant degradation of the analyses without this constraint. The convergence rate for low clouds is quite
good even with the cloud fraction in the control variables (83% instead of 88%) and the constraint on the gra-
dient can be kept. Semi-transparent clouds are more complicated with a convergence rate of only 38% with
the cloud fraction in the control variables and 44% without. The convergence rate is increased if we relax the
gradient constraint but we noticed some degradations in theanalyses.

In this first section, we have treated the easiest cloudy cases where the cloudy layer is simulated in the cor-
rect vertical level by the NWP model but with an excess cloud amount. The good results obtained for these
simple cases encouraged us to evaluate if it could be possible to shift the cloud in vertical levels with no cloud
in the background. These cases are the most complicated as the cloud Jacobians are non zero only in layers
covered by clouds.

4 Can we modify a cloud in layers that are not present in the background ?

In this section, the ‘true’ AROME profiles have been modified to shift the already existing cloud on vertical
levels where there is no cloud in the background. These casesare the most complicated to treat as the cloud
Jacobians are equal to zero where there is no cloud. Two example are shown where the clouds have been
shifted upwards: the opaque cloud (figure 9) and the low liquid cloud (10). Surprisingly, the results are very
promising. For the opaque cloud, a new ice cloud layer is created at 300 hPa with ice water content and cloud
fraction profiles very close to the ‘truth’. For the low cloud, a new liquid cloud layer is also created around
750 hPa. The liquid water content and the cloud fraction are underestimated and the cloud location is slightly
above the ‘true’ cloud but this second result is also very encouraging.

In order to understand how the 1D-Var is able to create new cloudy layers, we studied the 1D-Var behaviour for
differentB matrices:

• The completeB matrix with cross-correlations between variables;

• A block diagonalB matrix without cross-correlations between variables;

• A block diagonalB matrix without vertical correlations between adjacent levels for the cloud fraction.
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The results associated to the differentB matrices are shown in figures 9 and 10. We can note that even
without cross-correlations, the cloud is shifted upwards to fit the ‘true’ profile. However, the cloud location and
cloud amount are less close to the ‘truth’ more especially inthe case of the opaque cloud.

If we remove the vertical correlations between adjacent levels for the cloud fraction, the analysis does not
manage to create the new cloudy layer. The cloud fraction increment is confined at the cloud top level already
existing in the background. For the opaque cloud, we can alsonote the high humidity increment in the upper
troposphere which doest not seem sensible proving some deficiencies in the 1D-Var.

Figure 11 shows the cloud fraction profiles obtained during the first three iterations of the minimization in
the case of the opaque cloud. We also show the cloud fraction Jacobians computed at the first iteration by the
1D-Var using the background profile. The cloud fraction Jacobians are sensitive to atmospheric levels corre-
sponding to the maximum cloud fraction profile but also at thetop of the ice cloud layer just under 400 hPa.
This sensitivity just under 400 hPa is associated to a positive cloud fraction increment. If we take into account
the cloud fraction vertical correlations, this increment is spread on the vertical up to 200 hPa. On the con-
trary, without the cloud fraction vertical correlations, the increment is confined at 400 hPa. The appearance of
positive cloud fraction values between 200 and 400 hPa with the cloud fraction vertical correlations enable to
create non-zero Jacobians in the upper troposphere at the second iteration to gradually shift the cloud upwards.
Without the vertical correlations, the cloud fraction Jacobians above 400 hPa remain equal to zero during the
minimization making impossible the creation of a new cloudylayer.

Figure 12 shows the observation minus analysis departures obtained at each iteration of the minimization for
the differentB matrices in the case of the opaque cloud. With the completeB matrix, 15 iterations are needed
to make the 1D-Var converge but the O-A departures are closest to zero compared to the other experiments. In
fact, with a block diagonalB matrix, 9 iterations are needed for the convergence but the final O-A departures
are slightly higher than 0 K, especially for window channels. With a block diagonalB matrix without cloud
fraction vertical correlations, 8 iterations are needed for the convergence but the final O-A departures can reach
6 K for window channels showing deficiencies during the minimization.

This study proved the important role played by the cloudyB matrix during the minimization. For the anal-
ysis of cloud variables the use of state dependentB matrices is still an active area of research and is very
challenging for the future.

5 Root-mean-square-error (RMSE) of 1D-Var retrievals

The previous results were very promising but only few cloud cases were tested on specific background per-
turbations. At this stage, we decided to perform 1D-Var retrievals on a large sample of atmospheric profiles
to quantify the analysis on a statistical sense. For that purpose, the background profiles are generated from
the AROME profile dataset perturbed with the addition of simulated forecast errors. The forecast errors are
calculated from the background error-covariance matrixB such as :

xb = xt +
∑

i

ǫiλ
1/2
i Li (5.1)

wherexb is the perturbed background profile,xt is considered as the ‘true’ profile, andLi andλi are eigenvec-
tors and eigenvalues ofB andǫi is a random vector drawn from a Gaussian distribution with zero mean and unit
standard deviation. From these random perturbations, cloudy layers can be either created or dissolved from the
‘true’ profile.
The observations are generated from the ‘true’ background profiles and simulated observation errors are added
so that:

y = H(xt) + ǫoR
1

2 (5.2)
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Figure 9: Opaque cloud experiment: humidity (left panel), ice water content (middle panel) and cloud fraction
profiles (right panel) for the background (black line), the ‘true’ profile (blue line) and the analysis (red line).

wherey is the perturbed observation,H(xt) is the observation simulated from the ‘true’ profile, andǫo is a
random vector drawn from a Gaussian distribution with zero mean and unit standard deviation.

1D-Var retrievals are performed on a subset of 588 high opaque clouds, 390 semi-transparent clouds and 240
low clouds. Mixed-phase clouds and multi-layer clouds are taken into account in the experiment. Figures 13,
14, and 15 show the root-mean-square-errors of the analysisand the background against the ‘truth’ for opaque
clouds, low clouds and semi-transparent clouds respectively.

For opaque clouds, the analyses of ice water content and cloud fraction in the upper troposphere are improved
compared to the background. The temperature analysis is also better than the background in the stratosphere.
However, significant background degradations are observedfor humidity, liquid water content and cloud frac-
tion under 500 hPa.
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Figure 10: Low cloud experiment: humidity (left panel), liquid water content (middle panel) and cloud fraction
profiles (right panel) for the background (black line), the ‘true’ profile (blue line) and the analysis (red line).

For low clouds, the improvements are more prominent with a very good contribution of the cloudy sound-
ings to all the atmospheric column for all the variables. However, we can notice some degradations in the
humidity, liquid water content and cloud fraction analysesaround 900 hPa. These degradations are still very
small and limited to few atmospheric levels.

For semi-transparent clouds, the analyses are better than the backgrounds for the cloud fraction, the liquid
water content and the ice water content. The impact on temperature is neutral with no significant degradations
or improvements. The humidity analysis is improved for the upper troposphere above 700 hPa but some small
degradations are also observed at 700 hPa and 900 hPa.

The degradations observed on humidity and cloud variables for the low troposphere are probably due to non-
linearities that are not taken into account in the 1D-Var. These non-linearties cannot be detected with only the
study of the analysis error covariance matrixA which is computed in the context of linear estimation theory.

13



CompleteB matrix B matrix block diagonal
no vertical correlations for cfrac Cfrac Jacobians

−0.5 0 0.5 1 1.5

0

200

400

600

800

1000

Cloud fraction

P
re

ss
u

re
 [

h
P

a
]

 

 
background
iter 1
iter 2
iter 3

0 0.5 1 1.5

0

200

400

600

800

1000

Cloud fraction
P

re
ss

u
re

 [
h

P
a

]
 

 
background
iter 1
iter 2
iter 3

−30 −20 −10 0 10 20

0

200

400

600

800

1000

dTB/dcfrac[K]

P
re

ss
u

re
 [

h
P

a
]

Figure 11: Opaque cloud experiment: Cloud fraction profilesobtained at the first three iterations of the 1D-
Var minimization with the completeB matrix (left panel) and with a block diagonalB matrix with no vertical
correlations for the cloud fraction (middle panel). Cloud fraction Jacobians computed at the first iteration from
the background profile (right panel)
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Figure 12: Opaque cloud experiment: Observation minus analysis at each iteration of the 1D-Var minimization
with the completeB matrix (left panel, 15 iterations), with a block diagonalB matrix (middle panel, 9 iterations)
with a block diagonalB matrix with no vertical correlations for the cloud fraction(right panel, 8 iterations).

However, the results seem encouraging with good improvements of the cloud fraction and the cloud variables
for most cloudy cases on average.

6 Conclusion

This study was a preliminary investigation for the use of thecloud fraction for the assimilation of cloud-affected
IR radiances. The NWP SAF 1D-Var code was extended to includethe cloud microphysical variables as new
control variables: temperature, humidity, liquid water content, ice water content and cloud fraction. The con-
vective scale model AROME was used to provide 3-h forecasts for each variable. The retrievals were validated
in the context of observing system simulation experiments.
It was shown that the 1D-Var is able to increase or decrease the cloud amounts according to the observation
minus background departures and the Jacobians. The 1D-Var was able to succesfully modify cloudy layers
already existing in the background to better fit the ‘true’ AROME profiles.
We also found promising results to shift a cloud in vertical layers not covered by clouds in the background.
These cases are the most difficult but also the most interesting to deal with the cloud mislocation in NWP mod-
els. We highlighted the importance of the cloudyB matrix during the 1D-Var and more especially the vertical
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Figure 13: Opaque cloud experiment: Vertical profiles of root-mean-square errors of the background and the
analysis against the ‘truth’ (dotted and plain lines respectively) for temperature (top left), humidity (top middle),
liquid water content (top right), ice water content (bottomleft) and cloud fraction (bottom right).
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Figure 14: Low cloud experiment: Vertical profiles of root-mean-square errors of the background and the
analysis against the ‘truth’ (dotted and plain lines respectively) for temperature (top left), humidity (top middle),
liquid water content (top right), ice water content (bottomleft) and cloud fraction (bottom right.

correlations used for the cloud fraction. In fact, without vertical correlations between adjacent levels for the
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Figure 15: Semi-Transparent cloud experiment: Vertical profiles of root-mean-square errors of the background
and the analysis against the ‘truth’ (dotted and plain linesrespectively) for temperature (top left), humidity (top
middle), liquid water content (top right), ice water content (bottom left) and cloud fraction (bottom right.

cloud fraction, the 1D-Var is not able to move the cloud in clear and dry atmospheric layers because of the
non-sensitivity of cloud Jacobians at these levels. We havealso shown that the reduction of the O-B departures
are degraded if the cross-correlations between variables are removed from theB matrix.
Finally, to generalize our results, we performed 1D-Var retrievals on a large sample of atmospheric profiles to
compare the root-mean-square-errors (RMSE) of the analysis and the background against the ‘truth’. On aver-
age, the analyses are able to improve the background for all the variables. However, some slight degradations in
the humidity, liquid water content and cloud fraction analyses were observed in the low troposphere probably
due to non-linearities. These degradations are more significant for opaque clouds.
Even if our results are quite promising, there are many limitations and issues not covered by the study. The
degradations observed in the analyses of humidity and cloudvariables should be carefully investigated to un-
derstand if they come from non-linearities of cloud processes or the use of a non appropriate background error
covariance matrix. The use of a cloudyB matrix depending on the cloudy situation should be studied to quan-
tify the gain in information that would be brought in the analysis of cloud variables.
Finally, an idealized framework with simulated IASI observations was used but we can hope to find similar
results with real IASI observations after a careful pre-screening of data causing high non-linearities.
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Desroziers G, Berre L, Pannekoucke O, Stefãnescu S-E, Brousseau P, Auger L, Chapnik B, Raynaud L, 2008.
Flow-dependent error covariances from variational assimilation ensembles on global and regional domains.
HIRLAM Technical Report No. 68.
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Guidard V, Fourrié N, Brousseau P, Rabier F, 2010. Impact ofIASI assimilation at global and convective scales
and challenges for the assimilation of cloudy scenes.Quart.J.Roy.Meteor.Soc., DOI: 10.1002/qj.928,137,
1975-1987.

Hocking J, Rayer P, Saunders R, Matricardi M, Geer A, Brunel P, 2010. RTTOV v10 Users Guide .NWPSAF-
MO-UD-023, EUMETSAT, Darmstadt, Germany.
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