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Abstract

This paper describes some preliminary investigations sifrakating cloud-affected infrared radiances with the
use of cloud fraction as a new control variable. The advamaditive transfer model RTTOV-CLD is used
to simulate IASI spectra directly from a short range forédeetd including liquid water content, ice water
content and cloud fraction profiles. This approach enablewoee realistic representation of clouds and is
able to deal with multi-layer clouds by taking into accouldud scattering. The approach is illustrated with
1D-Var retrievals in the context of observing system siiofaexperiments. The results are promising and
encouraging with the 1D-Var being able to decrease or iserélae cloud amounts to reduce the observation
minus background departures.

1 Introduction

All numerical weather prediction (NWP) centres intend tor@ase the number of satellite observations as-
similated in cloudy conditions. Indeed, with about B0of satellite data at least partially covered by clouds,
the assimilation of infrared (IR) radiances is very resireif only clear scenes are assimilated. This under-
exploitation of IR satellite data, mainly caused by aggwesthinning, is also explained by the rejection of
cloud-affected radiances during the assimilation probesause of large innovations (observation minus back-
ground) due to cloud mislocation or deficiencies in the mouglof clouds, either in radiative transfer (RT)
models or NWP models. However, the high correlation betwsbaund cover and meteorologically sensitive ar-
eas underlines the need to use infrared observations ieme®f clouds (McNally| (2002), Fourrié and Rabier
(2004)). The all-sky approach used at the European Centfdddium Range Weather Forecasts (ECMWF)
for the assimilation of microwave dala (Geer etlal (2008ud8at al [(2010), Geer etlal (2010)) was a signif-
icant advance towards the assimilation of cloud and pretiph affected radiances. However, in the IR, an
incorrect modelling of clouds leads to increased errorénradiative transfer (RT) calculations which is very
sensitive to cloud microphysical properties, making the&ragation of cloud-affected infrared radiances more
difficult.

Despite the difficulty in assimilating IR satellite data lowdy conditions, most NWP centres have progressed
in the use of these data. All the existing approaches usem@ified modelling of clouds which are assumed to
be represented by single layers of opaque clouds with a dmisssivity equal to one. Clouds are characterized
by a cloud top pressure (CTOP) and an effective cloud fractide) (Pavelin et al. | (2008), Pangaud et al.
(2009), McNally (2009), Guidard et all (2011), Lavanantlet@011)). However, with most of these tech-
niques, too few data are assimilated due to the restricbooptique scenes and channels with weak cloud
sensitivity.

The aim of this work was to explore new assimilation techagbased on an explicit analysis of microphysical
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variables (liquid water content, ice water content and dlfsaction) for the simulation and the assimilation of
cloud-affected IR radiances. New convective scale modeish(as the Météo France AROME and Met Office
UKV models) produce forecasts of cloud variables with a higgolution. These profiles can be used in the
advanced radiative transfer model RTTOV-CLD (Hocking et@010)) to simulate cloudy IASI spectra taking
into account multi-layer and mixed-phase clouds but alsadtkcattering. The study lof Martinet et al (2013,a)
with the AROME model has already shown encouraging resaftshie inclusion of liquid water content and
ice water content in the control vector of the NWP SAF Met @ffl®-Var code (Pavelin and Collard (2009)).

This study follows this work by exploring the possibility aflding the cloud fraction as an additional state
vector variable with liquid water content and ice water eoit The inclusion of the cloud fraction (cfrac) is

important as the RT model RTTOV-CLD is highly sensitive te tloud fraction and to obtain a cloud fraction

profile consistent with the analyzed liquid water contewcjland ice water content (iwc) profiles. It has been
decided to add the cloud fraction in the control vector oftbeVar instead of using a diagnostic relationship to
derive the cloud fraction from the analyzed cloud variabledact, the use of a diagnostic relationship would
couple the cloud fraction and the hydrometeors strongly wiformulation from the numerical weather pre-

diction model that is certainly not appropriate to fit IASIselovations. Thus, we carried out one-dimensional
variational (1D-Var) retrievals of cloud variables (lweyd, cloud fraction) with an extended version of the
NWP SAF 1D-Var code. To evaluate the cloudy retrievals, lsgti¢ IAS| observations were used in the man-
ner of Observing System Simulation Experiments (OSSE)u@@iqrofiles from the French convective scale
model AROME were used to simulate the IASI observations.

Three cloudy profiles representative of semi-transparenidg high opaque cloud and low opaque cloud were
used to investigate three main questions:

e Are we able to properly modify the cloud variables of an algeaxisting cloud layer ?
e Are we able to properly create new cloudy layers in clear apheric layers in the background ?
e Can we generalize these results on a global dataset of clmofijes ?

In section 2, the NWP SAF 1D-Var code is presented as well@ddickground error covariance matrix used

for this study. Section 3 presents 1D-Var retrievals oféheemospheric profiles where the clouds have been
modified in cloudy layers already existing in the backgrauection 4 presents some 1D-Var retrievals for

which the cloud has to be moved in atmospheric layers notredvey clouds in the background. In these two

sections, the 1D-Var retrievals have been carried out aethtmospheric profiles: a high opaque cloud, a low
liquid cloud and a semi-transparent ice cloud. Section gegalizes the results of the previous sections by
performing 1D-Var retrievals on a large sample of atmosphamofiles. The root-mean-square errors of the

analysis and the background against the ‘truth’ are contpafdis paper concludes with a summary of the

main findings and future prospects.

2 Experimental framework

2.1 1D-Var framework

The 1D-Var analysis described here is based on linear op@stamation but some non-linearities are taken
into account through the update of the Jacobians at eactidter The best approximation of the atmospheric
statex is a combination of a vector of observatiopngnd a background statg from a short-range forecast.
The observations are linked to the atmospheric state by seredtion operatdd including interpolations from
the observation space to the model space and a radiatide@ranodel. The best linear unbiased estimation of
the atmospheric state is obtained by minimizing the costtfan:

2



I = %(x — ) B (X — %) + 2.1)

1 T
5V = HE)) 'Ry = H(x))

whereR is the measurement error covariance matlxs the background-error covariance matrixjs the
transpose operator and the inverse operator. During the minimization process, wehberg-Marquardt

descent algorithm is applied.

2.2 Cloudy background error covariance matrix

To optimize the assimilation of cloudy observations, appeie background error covariances that include
couplings with the other model variables should be coneitiemThe computation of cloud$ matrices is still

an active area of research but a cloilynatrix for temperature, humidity, liquid water content doel water
content was previously computed and tested for the AROMEah@dartinet et al [(2013,a)).

For that purpose, background-error covariances have hagnased for cloudy areas with a method similar
to the one described by Montmerle and Berre (2010) to diagfarecast errors in precipitating areas. The
background-error statistics were derived from an AROMEeanige assimilation, that considers explicit obser-
vation perturbations and implicit background perturbadichrough the cycling, coupled with the operational
ensemble assimilation at global scale AEARP (Desrozieas g2008)). They were calculated from a set of 18
convective cases observed during the months of July, AuanaiSeptember 2009. For separating cloudy and
clear areas, a geographical cloud mask has been applied fortrtast differences* = x,* — x,! between
membergk, [). For each member, only profiles whose vertically integratedd contents exceed 0.01 g-Kg
have been taken into account to perform the statistics. Alaimpproach to Michel et al.l (2011), which uses
an extension of the multivariate formalism proposed by 842000), has been chosen for the forecast errors of
g; and q, allowing couplings with errors of temperature and of uabakd specific humidity, the temperature
being univariate.

This cloudyB matrix was not available for the cloud fraction. It was decido use our AROME profile
dataset to compute the standard deviation of the cloudidra¢or each atmospheric level. These standard
deviation values were used as the diagonal elements of dliel ¢taction background error. The dataset used
for the computation of the standard deviation contains bath clouds and low clouds without any distinction
between semi-transparent and opague clouds. The aim wésdio @ static matrix that can be used for most
cloudy cases. We also decided to add a small correlatioriidi€tween the cloud fraction and the liquid water
content and the ice water content. To have some consistetagén the increments in adjacent levels, vertical
correlations that follow a Gaussian distribution were atldehe number of adjacent levels that are correlated
between each other was decided after testing diffdenatrices. The value of 12 vertical levels correlated was
found to be the best for the retrieval of the different cloadable: lwc, iwc, cfrac. Figurel 1 shows the enfe
matrix with the different block of covariances. The varibin the state vector are composed of 60 levels and
are sorted in this order: temperature, humidity, liquidevaiontent, ice water content and cloud fraction. The
standard deviation of background errors for each clouchiséiis presented in figuré 2.

3 Modification of cloudy layers already existing in the backgound

Ouir first study was to evaluate the feasibility of modifyinigtlze same time the three cloud variables (lwc,
iwc, cloud fraction) in cloudy layers already existing irethackground. This study was necessary to give
preliminary answers about the relevance of the inclusiah@tloud fraction in the state vector.
3-hour forecasts from the convective scale model AROME aexluo provide the ‘truth’x;) used as the
reference. These true profiles are perturbed to providedblegoound profile used in the 1D-Var and the IASI
observationy:

y = H(X;) + €,R? (3.1)
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Figure 1: Cloudy background error covariance matrix usethén1D-Var. The state vector contains the 60
vertical levels of each variable in the following order: tgmature (t), humidity (q), liquid water content (ql),
ice water content (qgi) and cloud fraction (cfrac).

wherey is the perturbed observatioR is the observation error covariance matrik(x;) is the observation
simulated from the ‘true’ profile, anel, is a random vector drawn from a Gaussian distribution witio neean
and unit standard deviation. Tlematrix is assumed diagonal with values constructed fronmirttiamental
noise provided by CNES. A constant error is also added toitakeaccount the radiative transfer model error
(0.2 K for liquid cloud and 0.5 K for ice cloud).

The 1D-Var retrievals have been performed with a subset 06flASI channels. This subset is composed of
the first 346 IASI channels of the operational channel subsed at ECMWHF_ (Collard and McNally (2009)).
These channels were chosen for their properties in clealithmms. A subset of 134 new channels were added
for their sensitivity to cloud variables (Martinet et al (20Db)).
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Figure 2: Background error for cloud fraction (left panétge water content (middle panel) and liquid water
content (right panel)

We studied three cloudy profiles: one low liquid cloud, onmisgansparent ice cloud and one opaque ice
cloud. For each cloudy profile, the ‘true’ AROME profiles amrtpirbed to increase the cloud fraction by 0.1

and the humidity and the cloud variables by%.@n the background profile. The observation minus background
departures are thus positive meaning an excessive cloudrdrmothe background compared to the observa-
tion.

3.1 1D-Var retrievals

The first example is a low liquid cloud shown in figlile 3. In tfigaire, observation minus background (O-B)
and observation minus analysis (O-A) departures, profiidmokground, true and analysis of humidity, cloud
water contents and cloud fraction are shown. The O-B degemrtare decreased as expected by the 1D-Var
in window channels sensitive to clouds. In order to remoeeekcess cloud, the 1D-Var decreases the liquid
water content but the increment is slightly too big. Howetleg cloud fraction is decreased from 1 to 0.9 in the
highest cloudy layer in good agreement with the ‘true’ peofttome non zero values appear above and below
the cloud after the analysis due to the vertical correlatiosed in the static cloudy matrix. This spread of
low clouds under an inversion layer can be problematic ingarational context. The use of a state-dependent
B matrix would help to stop the spreading of the cloudy layere &&n also think about penalizing the cost
function when clouds are created in a dry atmospheric layethis study was beyond the scope of the mission.

The second example is an opaque cloud with mixed-phaseslagaitaining both liquid water and ice (fig-
ure[4). Large O-B departures are observed with values up tdf@ kongwave window channels and 15 K
for shortwave window channels. These values are succhsdidreased by the analysis with O-A departures
much closer to zero. The ice water content profile is alsctiffely decreased to fit the ‘true’ profile. The cloud
fraction analysis is also better than the background fdn blmtudy layers. However, the cloud fraction analysis
fits better the ‘true’ profile in the highest cloudy layer (2080 hPa) than the lowest layer. The modification of
the cloud fraction associated to the liquid cloud layer tedainder 800 hPa is due to some transparency of the
cloud. Even if this cloud was classified as opaque because effective cloud fraction value above 0.9, the
cloud is not dense enough (1%kg.kg™! ) to avoid the contamination by low levels. This is illuseatby the
cloud fraction Jacobians in figuré 5 after multiplying the water content profile by 10. We can notice that the
Jacobians calculated with the initial cloud fraction pefileft panel) have significant values around 900 hPa
corresponding to the liquid cloud layer under the ice clauget. If we multiply the ice water content profile
by 10 (right panel) making the cloud more opaque(ly.kg~! instead of 10°kg.kg™! ), this sensitivity to
low levels disappeatr.

The third example is a semi-transparent ice cloud (figuirel&rge O-B departures are observed with val-
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ues up to 7 K for longwave window channels. The minimizatieerss to work well with O-A departures much
smaller than the O-B departures. The ice water content piisfidecreased effectively at the cloud top (200 hPa)
but the increment is slightly too big at 250 hPa. In order togee the excess cloud, the cloud fraction is well
reduced by the 1D-Var even if the increment should be biggea better fit of the ‘true’ profile.
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Figure 3: Low liquid cloud experiment: O-B and O-A (top letinel), humidity (top right panel), liquid water
(bottom left) and cloud fraction profiles (bottom right) fitve background (black line), the ‘true’ profile (blue
line) and the analysis (red line).

3.2 Linear error analysis of IASI cloudy radiances

In order to understand the 1D-Var increments shown in theigue section, as well as the information con-
tent of IASI cloudy radiances, the analysis error covaganmatrix A of the optimal state obtained after the
minimization of the cost function has been calculated. Ahmatrix is expressed by:

A'=B '+ HI'R'H (3.2)

where H is the Jacobian matrix (partial derivatives of the brigemeemperature with respect to each control
variable). The Jacobians with respect to each control biarigemperature, humidity, liquid water content, ice
water content and cloud fraction) for the optimal state & in figurd 7.

For the opaque cloud, temperature and humidity Jacobiansigmificant above 400 hPa associated to the first
ice cloud layer. The Jacobians with respect to the liquidewabntent are significant at atmospheric layers
covered by the low liquid cloud. The sensitivity at 500 hPdlg to the creation of non negative liquid water
content during the minimization by the cross-correlatibesveen variables explained in tBematrix. The
Jacobians with respect to the cloud fraction are signifieatdvels associated to the ice cloud (200 to 400 hPa)
and the liquid cloud (900 hPa).
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Figure 5: Opaque cloud experiment: cloud fraction Jacabt@mputed with the initial ice water content profile
(left panel) and the initial ice water content after the riplittation by 10 (right panel).

For the semi-transparent cloud, the temperature Jacobrarsgnificant up to 600 hPa showing a higher trans-
parency compared to the previous cloud. The Jacobians @sftect to the liquid water content are significant
on the lowest atmospheric levels (under 900 hPa) due to &atian of a new liquid cloud layer by tiematrix

cross-correlations. The Jacobians with respect to the aerneontent and the cloud fraction are significant at
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the cloud top (250 hPa).

For the low cloud, the Jacobians with respect to the liquiteweontent are associated to the liquid layer be-
tween 700 and 850 hPa and to new layers that appeared at 68@GithRhe B matrix cross-correlations. The
cloud fraction Jacobians are the most sensitive to levetsgjoove 800 hPa associated to the cloud fraction and
liquid water content maxima.

For all these cases, it is worth noting that the cloud contanbbians are the most sensitive to the upper part of
the cloud whereas the cloud fraction Jacobians peak atibhedémaximum cloud fraction and cloud contents.

Figure[8 shows the cloud fraction analysis errors (diagetehents of thé\ matrix ) compared to the cloud
fraction background errors (diagonal elements of Bhmatrix). Cloud fraction errors are mainly reduced at
cloud levels. For the opaque cloud, the reduction is sigmiti¢or both the ice cloud layer and the liquid cloud
layer. For the semi-transparent cloud, the reduction igeiinto the upper troposphere where the ice cloud is.
For the low cloud, the main reduction is observed at 800 hRarevtihe cloud is with some improvement at the
upper troposphere (400 hPa) due to the appearance of nortlpeid fraction values associated to a new ice
cloud layer created by tH® matrix cross-correlations .

3.3 Conclusion

In this section, we have shown encouraging results for ttlesion of the cloud variables (liquid water content,
ice water content and cloud fraction) in the control vectiothe 1D-Var. The 1D-Var correctly decreases the
cloud amounts to reduce the O-B departures according totabe dependent cloud Jacobians. However, we
noticed some convergence problem when the cloud fractimelisded in the control variables more especially
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Figure 7: Jacobians with respect to each control variabi@ feft to right: temperature, humidity, liquid water
content, ice water content and cloud fraction.

for opaque clouds for which the fraction of profiles reachiegvergence was decreased by@@®nly 33%
instead of 72). The 1D-Var convergence depends on three constraints :

Jcost — Jold
bs(———— 9x1073 3.3
abs( Toost ) <9.9 %10 (3.3)
whereJcost is the new cost function calculated with the new profile doldl is the old cost function.
T <101 (3.4)
Yold
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where~ is the new gamma factor of the Levenberg-Marquardt minitidraand -,y the previous gamma
factor.

VJcost < Jcost? (3.5

whereV Jcost is the gradient of the cost function. To obtain a better cayesece rate for opaque clouds, the
constraint on the gradient of the cost function was remove@ach 8% of convergence. We did not notice
a significant degradation of the analyses without this cairgt The convergence rate for low clouds is quite
good even with the cloud fraction in the control variable3%8nstead of 8%) and the constraint on the gra-
dient can be kept. Semi-transparent clouds are more caagdiovith a convergence rate of only%38vith

the cloud fraction in the control variables and’44vithout. The convergence rate is increased if we relax the
gradient constraint but we noticed some degradations iarhé/ses.

In this first section, we have treated the easiest cloudyscabere the cloudy layer is simulated in the cor-
rect vertical level by the NWP model but with an excess cloomant. The good results obtained for these
simple cases encouraged us to evaluate if it could be pedsilshift the cloud in vertical levels with no cloud

in the background. These cases are the most complicate@ atotid Jacobians are non zero only in layers
covered by clouds.

4 Can we modify a cloud in layers that are not present in the bakground ?

In this section, the ‘true’ AROME profiles have been modifiedshift the already existing cloud on vertical
levels where there is no cloud in the background. These casethe most complicated to treat as the cloud
Jacobians are equal to zero where there is no cloud. Two d®aan@ shown where the clouds have been
shifted upwards: the opaque cloud (fighie 9) and the lowdiguoud [10). Surprisingly, the results are very
promising. For the opaque cloud, a new ice cloud layer isteceat 300 hPa with ice water content and cloud
fraction profiles very close to the ‘truth’. For the low clqual new liquid cloud layer is also created around
750 hPa. The liquid water content and the cloud fraction adetestimated and the cloud location is slightly
above the ‘true’ cloud but this second result is also veryearaging.

In order to understand how the 1D-Var is able to create neudsitayers, we studied the 1D-Var behaviour for
differentB matrices:

e The completB matrix with cross-correlations between variables;
¢ A block diagonalB matrix without cross-correlations between variables;

e A block diagonalB matrix without vertical correlations between adjacentlsyor the cloud fraction.
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The results associated to the differ@matrices are shown in figuré$ 9 and 10. We can note that even
without cross-correlations, the cloud is shifted upwaddfitthe ‘true’ profile. However, the cloud location and
cloud amount are less close to the ‘truth’ more especialthéncase of the opaque cloud.

If we remove the vertical correlations between adjacengltetor the cloud fraction, the analysis does not
manage to create the new cloudy layer. The cloud fractiorement is confined at the cloud top level already
existing in the background. For the opaque cloud, we canras® the high humidity increment in the upper
troposphere which doest not seem sensible proving soméeateies in the 1D-Var.

Figure[11 shows the cloud fraction profiles obtained durlmg first three iterations of the minimization in
the case of the opaque cloud. We also show the cloud fractioobians computed at the first iteration by the
1D-Var using the background profile. The cloud fraction dgas are sensitive to atmospheric levels corre-
sponding to the maximum cloud fraction profile but also atttgof the ice cloud layer just under 400 hPa.
This sensitivity just under 400 hPa is associated to a pesifoud fraction increment. If we take into account
the cloud fraction vertical correlations, this incremesispread on the vertical up to 200 hPa. On the con-
trary, without the cloud fraction vertical correlationketincrement is confined at 400 hPa. The appearance of
positive cloud fraction values between 200 and 400 hPa Wwitctoud fraction vertical correlations enable to
create non-zero Jacobians in the upper troposphere atdbedsieration to gradually shift the cloud upwards.
Without the vertical correlations, the cloud fraction Jsieds above 400 hPa remain equal to zero during the
minimization making impossible the creation of a new cloladser.

Figure[12 shows the observation minus analysis departintsned at each iteration of the minimization for
the differentB matrices in the case of the opaque cloud. With the cometeatrix, 15 iterations are needed
to make the 1D-Var converge but the O-A departures are dltseero compared to the other experiments. In
fact, with a block diagonaB matrix, 9 iterations are needed for the convergence but tia¢ @-A departures
are slightly higher than 0 K, especially for window channélgith a block diagonaB matrix without cloud
fraction vertical correlations, 8 iterations are neededte convergence but the final O-A departures can reach
6 K for window channels showing deficiencies during the mination.

This study proved the important role played by the clo@lynatrix during the minimization. For the anal-
ysis of cloud variables the use of state depend&mhatrices is still an active area of research and is very
challenging for the future.

5 Root-mean-square-error (RMSE) of 1D-Var retrievals

The previous results were very promising but only few cloades were tested on specific background per-
turbations. At this stage, we decided to perform 1D-Varigetis on a large sample of atmospheric profiles
to quantify the analysis on a statistical sense. For thgtqae, the background profiles are generated from
the AROME profile dataset perturbed with the addition of dated forecast errors. The forecast errors are
calculated from the background error-covariance ma&rsuch as :

Xp = X¢ + Z eiAZ-l/QLi (5.1)

wherex; is the perturbed background profilg,is considered as the ‘true’ profile, allgd and)\; are eigenvec-
tors and eigenvalues & ande; is a random vector drawn from a Gaussian distribution witlo reean and unit
standard deviation. From these random perturbationsdgltayers can be either created or dissolved from the
‘true’ profile.

The observations are generated from the ‘true’ backgrouofilgs and simulated observation errors are added
so that:

y = H(x;) + eo,R2 (5.2)
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Figure 9: Opaque cloud experiment: humidity (left panek, Wwater content (middle panel) and cloud fraction
profiles (right panel) for the background (black line), ttreé’ profile (blue line) and the analysis (red line).

wherey is the perturbed observatiol(x;) is the observation simulated from the ‘true’ profile, angdis a
random vector drawn from a Gaussian distribution with zeeamand unit standard deviation.

1D-Var retrievals are performed on a subset of 588 high opatpuds, 390 semi-transparent clouds and 240
low clouds. Mixed-phase clouds and multi-layer clouds akem into account in the experiment. Figures 13,
[14, and_Ib show the root-mean-square-errors of the analgdishe background against the ‘truth’ for opaque
clouds, low clouds and semi-transparent clouds respéctive

For opaque clouds, the analyses of ice water content and @laction in the upper troposphere are improved
compared to the background. The temperature analysisadatter than the background in the stratosphere.

However, significant background degradations are obsdordtumidity, liquid water content and cloud frac-
tion under 500 hPa.
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Figure 10: Low cloud experiment: humidity (left panel),Uid water content (middle panel) and cloud fraction
profiles (right panel) for the background (black line), ttreé’ profile (blue line) and the analysis (red line).

For low clouds, the improvements are more prominent with iy g®od contribution of the cloudy sound-
ings to all the atmospheric column for all the variables. Ildear, we can notice some degradations in the

humidity, liquid water content and cloud fraction analysesund 900 hPa. These degradations are still very
small and limited to few atmospheric levels.

For semi-transparent clouds, the analyses are better tieahaickgrounds for the cloud fraction, the liquid
water content and the ice water content. The impact on teatyeris neutral with no significant degradations
or improvements. The humidity analysis is improved for theer troposphere above 700 hPa but some small
degradations are also observed at 700 hPa and 900 hPa.

The degradations observed on humidity and cloud varialolethé low troposphere are probably due to non-
linearities that are not taken into account in the 1D-VareSéhnon-linearties cannot be detected with only the
study of the analysis error covariance mathixvhich is computed in the context of linear estimation theory
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Figure 11: Opaque cloud experiment: Cloud fraction profilbtained at the first three iterations of the 1D-
Var minimization with the completB matrix (left panel) and with a block diagonBImatrix with no vertical

correlations for the cloud fraction (middle panel). Clouakction Jacobians computed at the first iteration from
the background profile (right panel)
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Figure 12: Opaque cloud experiment: Observation minug/aisadit each iteration of the 1D-Var minimization
with the completd8 matrix (left panel, 15 iterations), with a block diagoBamatrix (middle panel, 9 iterations)
with a block diagonaB matrix with no vertical correlations for the cloud fractifnight panel, 8 iterations).

However, the results seem encouraging with good improvesra@rthe cloud fraction and the cloud variables
for most cloudy cases on average.

6 Conclusion

This study was a preliminary investigation for the use ofdloeid fraction for the assimilation of cloud-affected
IR radiances. The NWP SAF 1D-Var code was extended to indlueleloud microphysical variables as new
control variables: temperature, humidity, liquid watentamnt, ice water content and cloud fraction. The con-
vective scale model AROME was used to provide 3-h forecastedch variable. The retrievals were validated
in the context of observing system simulation experiments.

It was shown that the 1D-Var is able to increase or decreaseltlud amounts according to the observation
minus background departures and the Jacobians. The 1D-a&iahle to succesfully modify cloudy layers
already existing in the background to better fit the ‘true’QIRE profiles.

We also found promising results to shift a cloud in verti@jldrs not covered by clouds in the background.
These cases are the most difficult but also the most integetstideal with the cloud mislocation in NWP mod-
els. We highlighted the importance of the clouglynatrix during the 1D-Var and more especially the vertical

14



— =3 0
—Acorr 0.1
200 ---Bcorr0.1 200
T ©
£ 400 £ 400
g p
:
2 600 ¢ 600
a a
800 800
1000 . . 1000
0 0.5 1 15
Temperature [K]
0
200 S
'E' Tee-ll
<, 400 T
s | e
3
]
¢ 600
a
800 §
—Acorr 0.1
---Bcorr0.1
1000 ; :

0 1 2 3 4 5
Ice Water Content [kgkg™] x 10~

6
5

: 0 . :
—Acorr 0.1 —Acorr 0.1
-=--Bcorr 0.1 -=--Bcorr0.1
1 200
g
<. 400
e
3
?
4 600
a
800
1000, - - - -
0 0.2 0.4 0.6 0.8 1
Humidity [kgkg™] x10™ Liquid Water Content [kgkg™]  x 107
0
200t 0 em=ge-o. .
E —Acorr 0.1 :’l
£ 400r |---Bcorr0.1 N
[ Phd
g J.
?
4 600
a
800
1000 - - -
0 0.1 0.2 0.3 0.4

Cloud fraction

Figure 13: Opaque cloud experiment: Vertical profiles oftnm@an-square errors of the background and the
analysis against the ‘truth’ (dotted and plain lines retipely) for temperature (top left), humidity (top middle),
liquid water content (top right), ice water content (botttaft) and cloud fraction (bottom right).
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Figure 14: Low cloud experiment: Vertical profiles of rooeam-square errors of the background and the

liquid water content (top right), ice water content (botttaft) and cloud fraction (bottom right.

analysis against the ‘truth’ (dotted and plain lines retipely) for temperature (top left), humidity (top middle),

correlations used for the cloud fraction. In fact, withoettical correlations between adjacent levels for the
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Figure 15: Semi-Transparent cloud experiment: Verticafilgs of root-mean-square errors of the background
and the analysis against the ‘truth’ (dotted and plain liespectively) for temperature (top left), humidity (top
middle), liquid water content (top right), ice water corttéoottom left) and cloud fraction (bottom right.

cloud fraction, the 1D-Var is not able to move the cloud inacland dry atmospheric layers because of the
non-sensitivity of cloud Jacobians at these levels. We hiseshown that the reduction of the O-B departures
are degraded if the cross-correlations between variabdeseeoved from th& matrix.

Finally, to generalize our results, we performed 1D-Variegals on a large sample of atmospheric profiles to
compare the root-mean-square-errors (RMSE) of the asadysl the background against the ‘truth’. On aver-

age, the analyses are able to improve the background fdveallariables. However, some slight degradations in
the humidity, liquid water content and cloud fraction aisgly were observed in the low troposphere probably
due to non-linearities. These degradations are more signtffor opaque clouds.

Even if our results are quite promising, there are many &tidhs and issues not covered by the study. The
degradations observed in the analyses of humidity and alatidbles should be carefully investigated to un-

derstand if they come from non-linearities of cloud proeess the use of a non appropriate background error
covariance matrix. The use of a clouBymatrix depending on the cloudy situation should be studieglian-

tify the gain in information that would be brought in the aysa$ of cloud variables.

Finally, an idealized framework with simulated IASI obssiens was used but we can hope to find similar

results with real IASI observations after a careful preesoing of data causing high non-linearities.
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