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Incorporation of RTTOV-8 in the JCSDA CRTM 
 

1. Introduction 
Simulation of atmospheric radiative transfer involves a number of physical processes. The Community 
Radiative Transfer Model (CRTM) is based upon a framework that is intended to allow independent 
development of algorithms to model these different processes. The components of atmospheric 
radiative transfer considered by the CRTM can be loosely divided into four main categories, 

1. Absorption of radiation by the gaseous constituents of the atmosphere, 
2. Absorption and scattering of radiation by clouds and aerosols,  
3. Surface emission of radiation and surface interaction with downwelling atmospheric radiation, 

and 
4. Solution of the radiative transfer equation. 

The CRTM framework was designed to allow for a relatively natural division of the software 
implementation of the above categories into modular entities so that as new or updated algorithms are 
developed, they can be easily integrated. This work focuses on modification of the atmospheric 
absorption component of the CRTM (hereafter referred to as AtmAbsorption), currently an 
implementation of OPTRAN, to incorporate the RTTOV equivalent into the CRTM framework. The 
other CRTM components – scattering, surface optics, and the radiative transfer itself – remain 
unchanged. The modifications are applied to all the CRTM forward(FWD), tangent-linear(TL), 
adjoint(AD), and K-matrix(K) models. 

2. Software Modifications 
The first goal was to continue the work begun by Roger Saunders in his visit to the JCSDA and get the 
forward model component working. His report is available as a NWPSAF visiting scientist report. 
However, to facilitate the later modifications for the TL, AD, and K models, it was decided to modify 
the CRTM interface itself to allow for sensor-based, rather than channel-based, processing. 

2.1 CRTM code changes 

Channel- to Sensor-based processing 
For historical reasons, to compute satellite sensor radiances or Jacobians the current operational 
CRTM does not distinguish between channels from different sensors. Prior to use in the CRTM, the 
spectral (SpcCoeff) and optical depth (TauCoeff) coefficient data for each required sensor are pre-
processed to concatenate all the individual sensor datafiles into one datafile per coefficient type (see 
Figure 1a). These datafiles are then used to initialise the CRTM by loading the concatenated SpcCoeff 
and TauCoeff data into the scalar shared data structures SC and TC (see Figure 1b) which are used 
internally in the CRTM to store these coefficient data. The various CRTM models then simply loop 
over the number of channels without distinguishing to which sensor any particular channel belongs. 
This is hereafter referred to as channel-based processing. 
 
To aid in the incorporation of other AtmAbsorption algorithms in the CRTM (not just RTTOV’s 
algorithm) the initialisation phase has been modified to use sensor-based processing. This eliminates 
the need to concatenate the separate sensor SpcCoeff and TauCoeff files prior to initialisation – the 
various datafiles can be read in as is (see Figure 2). Several significant changes have been made to the 
CRTM framework to implement the sensor-based processing, 

• Spectral (SpcCoeff) and optical depth (TauCoeff) shared data coefficient structures SC and TC 
were changed from scalar structures to rank-1 (of size nSensors) structure arrays. 

• The CRTM initialisation function was modified to accept a list of sensors and from that list 
determine the required SpcCoeff and TauCoeff datafiles to read and load into their respective 
shared data structure arrays. The output ChannelInfo structure – which contains indexing 
information for specific sensors/channels into the various shared data structure arrays – was 
changed from a scalar argument to rank-1 (of size nSensors). 
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• The main CRTM model functions (forward, tangent-linear, adjoint, and K-matrix) were 
modified 

o The interfaces were altered to accept the rank-1 ChannelInfo output from the 
initialisation function. 

o The internal channel loop was altered to loop over sensors and within that to loop over 
the channels for that sensor only. 

o The call interface to every internal routine interface was altered to accept both a 
sensor index (an index into a particular element of the shared data coefficient structure 
arrays SC and TC) and a channel index (an index into the component channel data 
within that structure element, e.g. SC(sensor index)%Frequency(channel index)). 

• All the internal routine interfaces (for AtmAbsorption, CloudScatter, AerosolScatter, 
SfcOptics, and RTSolution computations) and code itself were modified to accept both a 
sensor index and channel index. 

These generic changes to the trunk CRTM code made the subsequent integration of RTTOV into the 
CRTM framework much easier to implement. The RTTOV specific CRTM code changes are 
discussed in the next section. 
 

Read SpcCoeff
for current sensor

SpcCoeff to O/P
Append current sensor

Read TauCoeff
for current sensor

TauCoeff to O/P
Append current sensor

Another
sensor?

Concatenation
complete

concatenation
Begin coefficient

Write concatenated
SpcCoeff file

Write concatenated
TauCoeff file

Yes

No

Read concatenated
SpcCoeff into SC

Read concatenated
TauCoeff into TC

Initialisation
complete

Begin CRTM
initialisation

Current CRTM initialisation with
concatenated coefficientsCurrent coefficient concatenation preprocessing

(a) (b)  
Figure 1. Current CRTM initialisation methodology for channel-based processing. (a) Separate sensor SpcCoeff and 

TauCoeff datafiles are concatenated into single SpcCoeff and TauCoeff datafiles. (b) The concatenated 
datafiles are used to initialise the CRTM. 
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initialisation
Begin CRTM

counter, n
Increment sensor

Read SpcCoeff for
current sensor into SC(n)

Read TauCoeff for
current sensor into TC(n)

Another
sensor?

Yes

No

Initialisation
complete  

Figure 2. New CRTM initialisation methodology for sensor-based processing. 

RTTOV specific CRTM source code changes 
Before detailing the specific changes to the CRTM to accommodate the RTTOV AtmAbsorption 
algorithm, a fundamental difference between the RTTOV and CRTM design must be discussed – how 
the two codes process sensor channels. 
 
The CRTM was designed to process a single channel at a time. The main reason behind this design 
decision was to minimise the memory footprint of the CRTM when cloud and aerosol scattering was 
included in the computation. For highly scattering atmospheres, the memory required to hold all the 
intermediate forward variables (e.g. phase functions) for use in K-matrix computations would become 
prohibitive for the many channels case. Thus, each frequency dependent component of the CRTM is 
designed for processing a single channel per call. RTTOV, however, was designed to process many 
channels at once. Thus, to accommodate the use of the RTTOV AtmAbsorption algorithm, the 
requisite calls were moved out of the channel loop. This is discussed further below. 

TauCoeff loading. 
The CRTM module modified to accommodate the RTTOV coefficient file reading was 
CRTM_TauCoeff.f90. This module contains the shared data TauCoeff structure holding the 
AtmAbsorption algorithm coefficients and was modified to call the RTTOV-specific TauCoeff load 
routines. 

CRTM to RTTOV data mapping 
A module, RTTOV_Utility.f90, was created to contain procedures required to map between 
CRTM and RTTOV specific quantities. Currently the CRTM↔RTTOV Utility procedures include 

• CRTM_to_RTTOV_SensorID. A function to convert the CRTM sensor ID string to the 
RTTOV sensor ID triplet. 

• CRTM_to_RTTOV_Profile. Functions (forward, tangent-linear, and adjoint) to convert 
between the CRTM input structures (Atmosphere, Surface, and GeometryInfo) and the 
RTTOV profile structure. 

AtmAbsorption 
The CRTM_AtmAbsorption.f90 module was rewritten to accommodate the RTTOV algorithm, 
basically replacing the compactOPTRAN code with the calls to the various required RTTOV routines. 
While this rewrite was not a trivial exercise, the CRTM was designed with the idea that each 
component module would simply contain wrappers to provided code/algorithms. The main 
impediment to a “simple” integration of the RTTOV AtmAbsorption algorithm in the CRTM is the 
multi- versus single-channel processing issue discussed above. 
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The flowcharts in Figure 3 indicate the changes made to the CRTM forward model framework to 
accommodate the RTTOV AtmAbsorption code. The current CRTM forward model (Figure 3a) 
computes the AtmAbsorption predictors and then enters the sensor/channel loops computing the 
AtmAbsorption optical depth a channel at a time. For RTTOV integration, the AtmAbsorption 
predictor and all-channel optical depth computation were combined within the 
CRTM_AtmAbsorption.f90 module procedure and the call placed outside the sensor/channel 
loops. 
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Figure 3. (a) Flowchart of the current CRTM Forward Model highlighting the AtmAbsorption components. (b) 

Flowchart of the CRTM Forward Model with the RTTOV AtmAbsorption. In this case all sensor/channel 
AtmAbsorption computations are performed outside the main sensor/channel loop. 

The same procedure was followed for the tangent-linear and adjoint models also. For the K-matrix 
model, some additional channel looping was required in the RTTOV integration. The CRTM 
computes the sensor FOV surface skin temperature as an average of the temperatures for each surface 
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type (land, water, snow, and ice) weighted by the percentage coverage of each type in the FOV 
specified by the user. In the CRTM K-matrix model, the adjoint form of this averaging lies within the 
sensor/channel loop. However with the RTTOV AtmAbsorption because all channels are processed at 
once the sensor/channel loop needs to be “restarted” for the K-matrix surface temperature computation. 
This is shown schematically in Figure 4. A flowchart of the RTTOV library calls made in the forward 
and K-matrix RTTOV-based AtmAbsorption code is shown in figure 5. 
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Figure 4. (a) Flowchart of the current CRTM K-Matrix Model indicating the AtmAbsorption and surface temperature 

calculation components. (b) Flowchart of the CRTM K-Matrix Model with the RTTOV AtmAbsorption. In 
this case all sensor/channel AtmAbsorption computations are performed outside the main sensor/channel loop 
and an additional sensor/channel loop is required for the adjoint surface temperature calculation. 
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Figure 5. Flowchart of the CRTM AtmAbsorption code using with RTTOV library procedure calls. (a) Forward model. 

(b) K-Matrix model. 
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2.2  RTTOV code changes 
The CRTM framework and AtmAbsorption components were designed for inputs of layer quantities 
(temperature, water vapour amount, ozone amount) that are supplied within the GDAS. RTTOV, 
however, requires the user to input level-based quantities. In the RTTOV predictor computation 
routines, these data are averaged across levels to produce layer quantities which are then used in the 
RTTOV fast transmittance computation. To use CRTM inputs in the RTTOV calculations, this level-
averaging had to be removed. The effected RTTOV routines are, 
 

• Forward model 
o rttov_setpredictors.F90 
o rttov_setpredictors_8.F90 

• K-Matrix model 
o rttov_setpredictors_k.F90 
o rttov_setpredictors_8_k.F90 

(The tangent-linear and adjoint routines have not yet been changed.) 
 
The forward model changes simply consist of removing the atmospheric state variable averaging code 
and replacing it with a straight copy of the atmospheric profile inputs into local variables (see Figure 
6), and the K-matrix code was generated from those changes (see Figure 7). 
 
Averaging code… 
t(1) = prof%t(1) 
t(2:prof%nlevels) = (prof%t(1:prof%nlevels-1) + prof%t(2:prof%nlevels))/2._jprb 
 
w(1) = prof%q(1) 
w(2:prof%nlevels) = (prof%q(1:prof%nlevels-1) + prof%q(2:prof%nlevels))/2._jprb 
 
If (prof%ozone_Data .And. coef%nozone>0) Then 
  o(1) = prof%o3(1) 
  o(2:prof%nlevels) = (prof%o3(1:prof%nlevels-1) + prof%o3(2:prof%nlevels))/2._jprb 
End If 
Replaced with direct copy code… 
t(:) = prof%t(:) 
w(:) = prof%q(:) 
If (prof%ozone_Data .And. coef%nozone>0) Then 
  o(:) = prof%o3(:) 
End If 

Figure 6. Replacement of level averaging code in rttov_setpredictors.F90. Similar changes for 
rttov_setpredictors_8.F90 
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Averaging K-Matrix code 
If(prof%ozone_Data .And. coef%nozone>0)Then 
  prof_k%o3(1:prof_k%nlevels-1) = prof_k%o3(1:prof_k%nlevels-1) +& 
                                  0.5_JPRB*o_k(2:prof_k%nlevels,i) 
  prof_k%o3(2:prof_k%nlevels)   = prof_k%o3(2:prof_k%nlevels) +& 
           & 0.5_JPRB *o_k(2 : prof_k % nlevels, i) 
  prof_k%o3(1) = prof_k%o3(1) + o_k(1,i) 
End If 
 
prof_k%q(1:prof_k%nlevels-1) = prof_k%q(1:prof_k%nlevels-1) +& 
                               0.5_JPRB*w_k(2:prof_k%nlevels,i) 
prof_k%q(2:prof_k%nlevels)   = prof_k%q(2:prof_k%nlevels) +& 
                               0.5_JPRB*w_k(2:prof_k%nlevels,i) 
prof_k%q(1) = prof_k%q(1)+w_k(1,i) 
 
prof_k%t(1:prof_k%nlevels-1) = prof_k%t(1:prof_k%nlevels-1) +& 
                               0.5_JPRB*t_k(2:prof_k%nlevels,i) 
prof_k%t(2:prof_k%nlevels)   = prof_k%t(2:prof_k%nlevels) +& 
                               0.5_JPRB*t_k(2:prof_k%nlevels,i) 
prof_k%t(1) = prof_k%t(1) + t_k(1,i) 
Replaced with direct copy K-Matrix code 
If(prof%ozone_Data .And. coef%nozone>0)Then 
  prof_k%o3(1:prof_k%nlevels) = o_k(1:prof_k%nlevels,i) 
End If 
prof_k%q(1:prof_k%nlevels) = w_k(1:prof_k%nlevels,i) 
prof_k%t(1:prof_k%nlevels) = t_k(1:prof_k%nlevels,i) 

Figure 7. Replacement of K-matrix level averaging code in rttov_setpredictors_k.F90. Similar changes for 
rttov_setpredictors_8_k.F90 

3. Results 

3. 1 Forward model 
Brightness temperatures for the NOAA-16 HIRS/3 and selected channels of Aqua AIRS (see Table 1) 
were computed using both the CompactOPTRAN and RTTOV AtmAbsorption algorithms in the 
CRTM. The diverse 52-profile dataset sampled from ECMWF 60-level model fields1 and interpolated 
to the AIRS 100-layers was used as input to the calculations. The RTTOV coefficients used were also 
at the same layering to avoid wrapping in any interpolation errors into the results. Both clear sky and 
cloudy calculations were performed but only the clear sky results are shown here so that any 
AtmAbsorption differences are not masked by cloud absorption/scattering. 
 

AIRS 
channel 

Frequency 
(cm-1) 

AIRS 
channel 

Frequency 
(cm-1) 

AIRS 
channel 

Frequency 
(cm-1) 

AIRS 
channel 

Frequency 
(cm-1) 

71 666.7 787 917.2 1449 1330.8 1917 2229.3 
77 668.2 1021 1009.2 1627 1427.1 1958 2268.7 

305 737.1 1090 1040.1 1766 1544.3 1995 2305.5 
453 793.1 1142 1074.3 1794 1563.5 2107 2385.9 
672 871.2 1437 1323.8 1812 1576.1 2197 2500.3 

Table 1. AIRS channels used for CRTM CompactOPTRAN/RTTOV integration comparisons. 

The average and RMS differences between the calculated CRTM brightness temperatures using the 
CompactOPTRAN and RTTOV AtmAbsorption algorithms for NOAA-16 HIRS/3 and Aqua AIRS 
are shown in figures 8 and 9 respectively both as a function of sensor channel and ECMWF profile. 
For HIRS, the average difference fluctuates about zero and the RMS differences are at the 0.2K level. 
For AIRS, the average difference (as well as the min/max differences) as a function of profile indicates 
a positive bias of about 0.1K, with the RMS differences being around the 0.3-0.4K. This result for 
AIRS is not entirely unexpected as the water vapour continuum component of CompactOPTRAN is 
not optimal in the longwave IR window regions with an approximately 0.2-0.25K RMS error between 
absorption lines for the dependent profile set. 

                                                      
1 See Chevallier,F., Dec.2001, “Sampled databases of 60-level atmospheric profiles from the ECMWF analyses”, 
EUMETSAT/ECMWF SAF programme, Research Report No. 4. 
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 By HIRS Channel By ECMWF Profile 

Figure 8. Average (top) and RMS (bottom) brightness temperature differences for the NOAA16 HIRS/3 instrument  
between using CompactOPTRAN and RTTOV as the AtmAbsorption algorithm in the CRTM. The left panel 
shows the differences averaged over all profiles as a function of channel, and the right panel  shows the 
differences averaged over all channels as a function of the ECMWF profile. 

 s 
 By AIRS Channel By ECMWF Profile 

Figure 9. Average (top) and RMS (bottom) brightness temperature differences for selected channels of the Aqua AIRS 
instrument between using CompactOPTRAN and RTTOV as the AtmAbsorption algorithm in the CRTM. The 
left panel shows the differences averaged over all profiles as a function of channel, and the right panel  shows 
the differences averaged over all channels as a function of the ECMWF profile. 
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3.2  K-Matrix model 
Similarly to the forward model test, the CRTM K-Matrix model was run with the CompactOPTRAN 
and RTTOV AtmAbsorption algorithms for both the NOAA-16 HIRS/3 and Aqua AIRS. A 
comparison of temperature, water vapour and ozone Jacobians for selected sensor channels and 
ECMWF profiles are shown in Figure 10. A quantitative comparison of the Jacobians is beyond the 
scope of this work, but these initial results are very encouraging. In general, the comparison of the 
temperature Jacobians is very good. Water vapour and ozone Jacobian comparisons are quite good for 
strongly absorbing channels, and poorer for weakly absorbing channels. For the stronger absorption 
channels, the shapes of the Jacobians tend to be well matched even if the magnitudes may not be. One 
interesting thing that was noticed in comparing the Jacobian profiles is that there seems to be a strong 
correlation between the shapes of the water vapour and ozone Jacobians. The CompactOPTRAN-
based CRTM exhibits this feature more prominently, but the RTTOV-based CRTM results also 
indicate a similar behaviour. Also, while the CompactOPTRAN algorithm will always produce 
smoother Jacobians than RTTOV, it should be explicitly noted that the Jacobian comparisons shown 
here are relative – that is, we have not compared them to line-by-line model Jacobians so no 
determination should be made as to the correctness of the Jacobians based on how well behaved they 
may be in the vertical.  
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 NOAA-16 HIRS/3 Aqua AIRS 
Figure 10. Temperature (top), water vapour (middle) and ozone (bottom) Jacobian profile comparisons between using 

CompactOPTRAN and RTTOV as the AtmAbsorption algorithm in the CRTM. The left panel of plots is for 
channel 7 of NOAA-16 HIRS3 for ECMWF profile #4 and the right panel of plots is for channel 305 of Aqua 
AIRS for ECMWF profile #31. 
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4.  Summary of RTTOV Integration and Recommendations 
The work described here was undertaken during an NWP SAF visiting scientist mission from the 
JCSDA to the MetOffice by Paul van Delst – a reciprocal visit to continue the work begun by Roger 
Saunders when he visited the JCSDA in April/May 2006. The original proposal was to integrate the 
tangent-linear, adjoint and K-matrix forms of RTTOV into the equivalent CRTM models and this was 
achieved – with, in the author’s opinion, quite remarkable results for a first attempt. 
 
One of the current goals of the CRTM is to allow simultaneous integration of different AtmAbsorption 
algorithms with the current emphasis on CompactOPTRAN and SARTA (the official AIRS RT 
model). To achieve this for the RTTOV AtmAbsorption algorithm, the previously discussed issue of 
how the CRTM and RTTOV process channels needs to be addressed. Due to the RTTOV requirement 
to process multiple channels per RTTOV call, the implementation of the RTTOV AtmAbsorption 
algorithm described in this report does not mesh easily with the design of the CRTM. It will also not 
allow for the more generic simultaneous multiple-algorithm approach of AtmAbsorption calculations 
within the CRTM. While RTTOV can process single channels at a time, it was not designed for that 
type of usage and the efficiency of this sort of implementation is questionable. A test of this sort of 
integration is recommended to determine the feasibility of the approach. 
 
The integration of RTTOV in the CRTM provides the first opportunity to compare two current 
AtmAbsorption algorithms within an assimilation environment. This comparison would involve both 
the comparison of forward model results, i.e. comparing differences between calculation and 
observations for the two AtmAbsorption algorithms, but, more importantly, allow for the quantitative 
comparison of the impact of the different Jacobians in an assimilation system. As the K-matrix results 
of Figure 9 show, even though the agreement between the two approaches is quite good, there are still 
significant differences (in both magnitude and shape) between the Jacobians. Because the CRTM is 
already integrated into the GSI, this work would need to be carried out at the JCSDA and require 
additional resources. 

5.  Comments on RTTOV-87 code 
The remaining recommendations relate to the RTTOV code implementation. 

• Removal of array references in source code simply to document that a particular variable is an 
array, that is using the notation “x(:)” to indicate that the variable “x” is an array. While for 
most cases the use of “x(:)” as a euphemism for “x” typically has no deleterious side effects, 
they are not the same thing. The former is an array slice and the latter is not. 

• Implementation of allocation and destruction procedures for the RTTOV derived data types. 
Rather than have a user explicitly allocate and deallocate the many components of various 
RTTOV structures (e.g. profile structure, auxiliary profile structure, transmittance structure, 
etc), helper procedures should be provided to perform this function. This will make user’s 
code , and internal RTTOV code, much cleaner and easier to read. In addition – and more 
importantly – if and when structure components are added or deleted the code developer will 
only have to modify the helper procedures to ensure all structure components are correctly 
allocated and deallocation (in addition to any changes made where that structure component is 
actually used). 

• Standardisation of argument order. It was noticed that some RTTOV routines have similar 
arguments (e.g. the channel and polarisation arguments) in opposite order. 

• Consider the use of modules rather than separate interface bodies to define explicit interfaces 
for procedures. I realise this is a major change and does clash with current operational 
requirements (at ECMWF), but the current scenario restricts RTTOV development to only 
those groups who have access to the tools to automatically generate the required interface 
bodies. RTTOV is not that large a package that compilation cascade is an issue. In the context 
of use within a larger body of code this might not be true, but in that case, isn’t RTTOV 
compiled separately into a library and linked in? 

• This relates to the previous point. Definition of structures and all their helper functions (e.g. 
allocate, destroy, assign, test, etc) in their own modules. Currently the RTTOV data types are 



 14

all defined in a single module. Unit testing of code is much less complicated when the various 
components are encapsulated and loosely coupled. It also makes code maintenance more 
straightforward as developers modifying a particular derived data type definition (and any 
associated methods) will be less likely to impact other derived type definitions (and their 
associated methods). 

 
 
 




