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1 Introduction 
The purpose of data assimilation is to find a model state that gives the best match between the most 
recent model prediction and the observations that became available since. This state is called the 
analysis. It is the starting point for the Numerical Weather Prediction (NWP) model to calculate the 
forecasts. As computers become more powerful, more detailed NWP models are possible. As a consequence, 
this poses challenges not only to the model physics that should be able to describe meteorological features on 
smaller scales, but also to the observations that should cover all scales of interest at sufficient temporal 
resolution and the data assimilation system that should produce a detailed analysis. 

In this document some of the problems regarding the assimilation of mesoscale observations into NWP 
models are addressed. 

The report is intended for all who work on mesoscale data assimilation. The report is by no means 
exhaustive, nor will it answer all questions. In many cases only the challenges and caveats will be 
mentioned. User feedback is therefore more than welcome to keep this document up to date. 
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2 Principles of data assimilation 
From statistical interpolation theory, see e.g. Daley [1998] the analysis state vector a  is given by 

 b)(oO)B(Bba 1 −+=− −  (1) 

with b  the background state vector, B  the background error covariance matrix, o  the observation 
state vector, and O  the observation error covariance matrix. In general, the observations are 
uncorrelated, so IO 2

Oσ= , with 2
Oσ  the observation error variance and I  the identity matrix. 

Such a data assimilation system acts like a filter [Hollingsworth and Lönnberg, 1986]. Suppose that 

ie  is an eigenvector of B  with eigenvalue iλ . Suppose further that i)( ba −  and i)( bo −  are the 
projections of )( ba −  and )( bo −  on ie . Then we have 

 iii )()( boboB −λ=−  

 iOiii ))(())(())(( 2 boboIσBboOB 2
O −σ+λ=−+=−+  

 iOii )()()()( 121 boboOB −σ+λ=−+ −−  

and therefore 
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Oi

i
i b)(oba −

σ+λ

λ
=− 2)(  (2) 

This implies that the data assimilation system acts as a low-pass filter with respect to the 
eigenvalues: eigenvectors of B  with eigenvalues larger than 2

Oσ  are analyzed well, but those with 
eigenvalues smaller than 2

Oσ  are suppressed in the analysis. The filter properties are thus 
determined by the background error correlations, which in turn depend on the NWP model under 
consideration. 

The background error correlations are often parameterized. They are then referred to as structure 
functions. Note, however, that the term structure function is also used to denote correlations of 
spatial differences. 
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3 2DVAR as data assimilation test bed 

By the nature of the physical processes involved, wind measurements from a scatterometer are 
ambiguous, so additional information is needed to select the “best” ambiguity for a stand-alone 
wind product. This is called ambiguity removal. Various schemes have been proposed, and the 
KNMI scatterometer wind processors use 2DVAR, two-dimensional variational ambiguity removal 
(Vogelzang et al., 2009). 

2DVAR consists of two steps: 

(1) Make an analysis from the scatterometer observations and the ECMWF (or NCEP) background; 

(2) Select the ambiguity closest to the analysis (so 2DVAR could also be named “closest-to-
analysis”) 

The analysis is made using the methods of statistical interpolation, and the first step of 2DVAR is 
the same as 3DVAR or 4DVAR. Therefore 2DVAR can be used as a data assimilation test bed. 

Figure 1 shows wind spectra of all data of January 2009 for ASCAT at 12.5 km grid size (blue 
curves), the ECMWF background on approximately 60 km grid size interpolated in time and space 
to the ASCAT measurements (red curves), and the 2DVAR analysis (green curves). results are 
shown for the zonal wind component u  (left hand panel) and the meridional wind component v  
(right hand panel). The dotted black line shows a 3/5−k  spectrum at arbitrary level. Such a spectrum 
is predicted by Kolmogorov’s three-dimensional turbulence theory. 

Figure 1 shows that the ECMWF background contains much less information than the ASCAT 
wind field at small and intermediate scales. This is partly caused by the fact that the background 
fields that were downloaded from ECMWF had a resolution of about 60 km, but also because the 
ECMWF model lacks detail in areas where valid scatterometer winds are measured. Figure 1 also 
shows that the 2DVAR analysis follows the background and fails to incorporate the small scale 
information in the ASCAT measurements. This must be a consequence of the filtering properties of 
2DVAR, with small eigenvalues corresponding with eigenvectors that describe small detail. 
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Figure 1   Wind spectra of ASCAT-12.5, ECMWF, and 2DVAR analysis. 

 

2DVAR contains a number of parameters: the error variances of observations and background and 
the structure function parameters. When trying to improve 2DVAR there is little freedom in varying 
the error variances, as these are constrained by triple collocation. As an example figure 2 shows an 
ASCAT wind field on a 25 km grid on 17 November 2009 around 17:40 UT obtained with the 
default 2DVAR settings. Figure 3 shows the same area, but now with the structure function cutoff 
reduced to 100 km. As a consequence, ambiguity removal errors are visible in the northwestern part 
of the wind field. 

 Apparently, the short-ranged structure functions are not able to describe the inflow to the cyclone. 
The reason for this error is shown in figure 4: a spurious developing low near 25°S and 120°W. 
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Figure 2   ASCAT-25 wind field on 17-11-2009 around 17:40 UT in the Southern Pacific. Purple arrows indicate cells 

that have the variational quality control set, orange arrows cells that have the MLE quality control set. 
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Figure 3 As figure 2, but obtained with a structure function cutoff of 100 km. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4   Background belonging to figures 2 and 3. 
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4 How to improve the analysis 
In order to assimilate mesoscale features into a NWP model, one should use realistic values for the 
error variances and structure functions. Error variances of observations and background may be 
found using triple collocation [Vogelzang et al., 2011]. Structure functions may be obtained in the 
following way: In the homogeneous and isotropic case the error autocorrelations for the longitudal 
and transversal wind components, llρ  and ttρ , read [Daley, 1998] 

 
2

2
2222 )()(1)1()(

dr
rd

L
dr

rd
r

Lrll
χχ

χ
ψψ

ψ

r
ν

r
νr −−−=  (3a) 

 
dr

rd
r

L
dr

rd
Lrtt

)(1)(
)1()( 22

2

2
22 χχ

χ
ψψ

ψ

r
ν−

r
ν−−=r  (3b) 

with ψψρ  and χχρ  the autocorrelations of the stream function and velocity potential. ψL  and χL  are 
length scales, and 2ν  is the divergence/rotation ratio. llρ  and ttρ  are observables, while ψψρ  and 

χχρ are the structure functions that make up the background error covariance matrix. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5   Numerical structure functions and Gaussian structure functions 

Vogelzang and Stoffelen [2011] show how equations (3a-b) can be solved for ψψρ  and χχρ . In the 
case of 2DVAR, this procedure leads to structure functions with a long range, see figure 5. 
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Figure 6 shows the impact of the numerical structure functions of figure 5 as the spectral ratio of the 
resulting analysis with the default analysis as a function of ks /1= . Indeed application of numerical 
structure functions increases the information content of the analysis at small and intermediate scales 
considerably: up to a factor of 6 for v  at scales around 150 km. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.   Spectral ratio 
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5 Challenges 
Mesoscale data assimilation poses a number of challenges for the future. 

(1) The NWP model must be able to propagate mesoscale structures in a realistic way. This is 
a long-term measure, as it may involve reformulating the model physics and parameterisations. 
Simply decreasing the grid size and time step is not enough. Moreover, small-scale dynamic 
features grow non-linearly while their forecast range is limited. This may introduce unwanted 
errors over larger forecast times. 

(2) There must be sufficient three-dimensional data available to initialize ageostrophic flow. 
Though measurements are relatively abundant over land (radar, aircraft, in-situ), this is not the 
case over the oceans. Here more satellite observations will be needed. 

(3) Observations will have a larger weight when assimilation smaller scales. This is 
schematically depicted in figure 7 which shows the spectrum of observations (o) and that of the 
background of models with course resolution (b) and fine resolution (b’) 

 

 

 

 

 

 

 

 

 

 

 

Figure 7   Mesoscale data assimilation 

 
• If the model has course resolution, represented as the solid red curve labeled b, the area 
between the solid red and blue curves represents variance that is present in the observations, but 
not included in the model. This variance will therefore add to the representativeness error of the 
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observations and hence to their total error. When the model resolution increases, as represented 
by the dashed red curve labeled b’, the area between the blue and dashed red curves decreases. 
As a consequence the representativeness error of the observations decreases and the 
observations get larger weight in the analysis. 

(4) The fact that in mesoscale data assimilation the observations get larger weight also bears 
the risk of overfitting. It is not clear yet how one should deal with spin-up effects and 
detrimental effects of uncertain weights in the background error correlation matrix. Adaptive 
background error covariances are notoriously difficult, though they are being implemented in 
Ensemble Kalman Filter (EKF) at ECMWF 

(5) One needs suitable verification metrics for mesoscales, involving wind and precipitation 
rather than pressure and temperature. 
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