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 Introduction 1

The purpose of data assimilation is to find a model state that gives the best match between the 
most recent model prediction and the observations that became available since. This state is 
called the analysis. It is the starting point for the Numerical Weather Prediction (NWP) model to 
calculate the forecasts. As computers become more powerful, more detailed NWP models are 
possible. As a consequence, this poses challenges not only to the model physics that should be 
able to describe meteorological features on smaller scales, but also to the observations that 
should ideally cover all scales of interest at sufficient temporal and spatial resolution and the data 
assimilation system that should produce a detailed analysis on the scales supported by the 
observations and the model.  

Note that Skamarock (2006) identifies an important difference between NWP model resolution 
and grid sampling size; he suggests the effective NWP model resolution to be typically 5-10 times 
larger than the grid size. One may expect a similar effect in the vertical dimension due to 
dynamical closure (in the 3D turbulence regime). Global NWP models used for medium-range 
weather forecasting minimize model noise, i.e., they tend to only analyze atmospheric scales that 
are supported by the global observing system and thus may be analyzed deterministically. As a 
result, global NWP models lack convective-scale processes and for example do not show changing 
winds over the 50 min Metop-A and B time differences, whereas ASCAT observations show 
substantial changes near convection over large areas (100 km and more) (e.g., King et al., 2017). 
Limitations in effective resolution provide a lower limit for the useful scale of flow we could 
attempt to derive from wind observations in global NWP. On the other hand, high resolution 
limited area models operate on the mesoscale and contain more small-scale variability. Some 
regional high-resolution NWP models (km scale grid) contain wind variability on the 10 km scale in 
the free atmosphere i.e. an order of magnitude smaller than global NWP models generally do. But 
since we do not have the observations to support the evolution of the fast 4D 10-km structures in 
a NWP model, we will have to deal with model noise on the unsupported scales. 

How to determine the deterministic scales that observations may support? Although the km-scale 
regional models can resolve smaller scales in principle, these tend to change fast, and represent 
only modest energy conversion. Therefore, an extension of the observing system would be needed 
with spatially and temporally dense, very accurate and timely observations to initialize and evolve 
these scales in NWP models in a deterministic way. In fact, while some observation systems exist 
locally (e.g., descending aircraft near airports), the required quantity and coverage of observations 
remains a daunting challenge. In the absence of a resolving wind observing system to initialize 
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these turbulent scales in regional NWP models, high resolution NWP will face increased variances, 
faster changes and smaller scales in background error covariances. These changes potentially 
compromise the analysis of the larger scales. A trade-off between forecast horizon and short-term 
quality arises. We will discuss these challenges further in this report. A good understanding and 
analysis of effective model resolution and determined scales is anyway needed to proceed 
successfully. 

Observations are lacking over sea, in the upper air, and in remote land areas, and do not support 
the analysis on the high resolution NWP model scales. In particular, on scales smaller than 500 km 
wind observations determine weather evolution, while these are generally lacking for mesoscale 
data assimilation. When strong surface forcing (e.g., orography) is absent and when model scales 
are not observed, and thus not analyzed, model noise will result. Model noise results in so-called 
“double penalties” in the data assimilation step and to detrimental effects in the forecasts due to 
error growth. In this report we provide a framework for discussion on how to optimally assimilate 
wind observations in 4D mesoscale data assimilation, taking account of considerations on 
observation density, accuracy, model resolution and the spatial scales involved. 

In global NWP mainly the deterministic scales are analysed, which avoids the detrimental 
consequences of model noise on the medium range forecasts. We may use stable scatterometer 
winds to diagnose the evolution in o-b over the past decade. Figure 1 shows the evolution of 
ASCAT and ECMWF mesoscale variances over the past decade. ASCAT variances are approximately 
constant, although a yearly cycle is evident in the world-wide ocean winds. The collocated ECMWF 
variances show the anticipated skill improvement over the years due to model improvements and 
the assimilation of more satellite data, leading to improved initial conditions and medium-range 
weather forecasts. About 10% of the mesoscale deficit of ECMWF winds with respect to ASCAT 
winds has been removed over the past decade, leading to a better verification of ECMWF winds 
(smaller o-b). We expect that this gradual improvement will continue in the coming decades 
leading to a slow but gradual improvement in the mesoscale scales that can be deterministically 
tracked. On the other hand, this gradual progress will leave much room for regional mesoscale 
downscaling and data assimilation. 
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Figure 1   Variance in 25-km ASCAT winds (O) and collocated ECMWF data (B) below 200 km scales for the u 
(left) and v (right) components. O-B is the variance of the average difference between both and r2 the variance 

present in ASCAT, but not in ECMWF fields. 
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Figure 2   Mesoscale data assimilation, NWP model determined scales, non-determined scales or noise and the 
target area for scales updated in the analysis. Adopted from Nastrom and Gage (1987). 

Figure 2 illustrates the above discussion and depicts the problem of mesoscale data assimilation 
schematically. The atmospheric transient flow is here broken down in different wave lengths, 
where fluid dynamics predicts 2D turbulence in the troposphere on the large (> 500km) synoptic 
scales, but 3D turbulence on the smaller mesoscales. In both regimes, the larger waves have the 
larger amplitudes, but this decay for increasing wavelength is fastest in the 2D turbulent regime. 
The set rate of amplitude decay in the 3D turbulence regime proves an excellent indicator of NWP 
model resolution, rather than the grid spacing, when compared to collocated observations. The 
smallest scales are thus the smallest in amplitude, but also the scales that evolve fastest, hence 
complicate NWP and nowcasting applications most. The report is intended for all who work on 
mesoscale data assimilation. The report is by no means exhaustive, nor will it answer all questions. 
In many cases only the challenges and caveats will be mentioned. User feedback is therefore more 
than welcome to keep this document up to date. 

A closely related report from the EUMETSAT NWP SAF concerns model wind biases and how to 
prevent its detrimental effects in wind data assimilation (Document NWPSAF-KN-UD-007). 
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 Principles of data assimilation 2

The data assimilation system1 has the following components: 
- Observation quality control, 
- Analysis step, and 
- Forecast step. 

In the forecast step, using the previous analysis as initial conditions, a forecast model is run, which 
provides background information (the first guess) on the expected atmospheric state for the new 
observations in the next assimilation time window. The new observations will generally not 
perfectly agree with the background information, and in the analysis step both need to be 
compromised. If the accuracy of the observation is estimated to be poor, then the analysis will be 
close to the first guess. Conversely, when the observation is estimated to be very accurate as 
compared to the first guess, then the analysis will be close to the observation. The accuracies of 
the observations and the first guess are estimated on the basis of the monitoring of the 
differences between the first guess and the different observation types and parameters. 

Lorenc (1988) describes common assumptions leading to 3D and 4D variational data assimilation 
and Ide et al. (1998) describe a detailed generic nomenclature used in data assimilation. The 
former author describes what is called “representativeness error” and which includes the 
variability in the different spatial, temporal and geophysical representation of the observations 
and the NWP model. Vogelzang et al. (2011) note that this representativeness error is spatially 
correlated for collocated buoy and scatterometer winds, since they measure the same true wind 
on scales between 25 km (scatterometer scale) and 150 km (ECMWF scale). 

In 2015 Lorenc provided an excellent description of the different data assimilation techniques used 
and their benefits and limitations. An intricate part of data assimilation obviously exists in how 
observed information is used to inform (i.e., change) the NWP model state, where the background 
error covariances play a crucial role in the spatial and temporal filtering properties, i.e., to set the 
deterministic spatio-temporal scales of the NWP model error. On the other hand, also estimated 
error variances and observation density are crucial to determine the balance of weights between 
model-based and observed information. A too low weight of observations obviously minimizes 
impact, but too much observation weight may result in spurious analysis noise due to overfitting. 
We will further discuss this balance later on. 

From statistical interpolation theory, see e.g. Daley (1998) the analysis state vector  is given by 
                                                           
1 MedEd tutorial: https://www.meted.ucar.edu/training_module.php?id=704#.W5Uxif5lIiY  

a

https://www.meted.ucar.edu/training_module.php?id=704#.W5Uxif5lIiY
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  (1) 

with  the background state vector,  the background error covariance matrix,  the 
observation state vector, and  the observation error covariance matrix. In general, the 
observations are uncorrelated, so , with  the observation error variance and  the 
identity matrix. 

Such a data assimilation system acts like a filter (Hollingsworth and Lönnberg, 1986). Suppose that 
 is an eigenvector of  with eigenvalue . Suppose further that  and  are the 

projections of  and  on . Then we have 

  

  

  

and therefore 

  (2) 

This implies that the data assimilation system acts as a low-pass filter with respect to the 
eigenvalues: eigenvectors of  with eigenvalues larger than  are analyzed well, but those with 
eigenvalues smaller than  are suppressed in the analysis. The filter properties are thus 
determined by the estimated error covariances and the background error correlations, which in 
turn depend on the NWP model under consideration and the weather phenomena it describes. 

The background error correlations are often parameterized, for example based on ensemble data 
assimilation. They are then referred to as structure functions. Note, however, that the term 
structure function is also used to denote correlations of spatial differences. 
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 2DVAR as data assimilation test bed 3

By the nature of the physical processes involved, wind measurements from a scatterometer are 
ambiguous, so additional information is needed to select the “best” ambiguity for a stand-alone 
wind product. This is called ambiguity removal. Various schemes have been proposed, and the 
KNMI scatterometer wind processors use 2DVAR, two-dimensional variational ambiguity removal 
(Vogelzang et al., 2009). 

2DVAR consists of two steps: 

(1) Make an analysis from the scatterometer observations and an NWP background; 

(2) Select the ambiguity closest to the analysis (so 2DVAR could also be named “closest-to-
analysis”) in order to prevent a substantial dependency on the background. 

The analysis is made using the methods of statistical interpolation, and the first step of 2DVAR is 
very similar to 3DVAR or 4DVAR. Therefore 2DVAR can be used as a data assimilation test bed. 

 

Figure 3 shows meridional wind component spectra of data in 2010 for ASCAT (red curves) at 25 
km grid size and Mode-S (black curves) with the IFS-interpolated ECMWF background (dot-
dashed). The blue line shows a  spectrum at arbitrary level. Such a spectrum is predicted in 
the atmosphere by Kolmogorov’s three-dimensional turbulence theory for scales smaller than 
about 500 km. 

Figure 3 shows that the ECMWF background contains much less information than the ASCAT wind 
field at small and intermediate scales. This is mainly caused by the fact that the ECMWF model 
lacks detail in areas where valid scatterometer winds are measured and in the upper air above 
Europe at the Mode-S tracks. We note that the 2DVAR analysis follows the background and fails to 
incorporate the small scale information in the ASCAT measurements. This is a consequence of the 
filtering properties of 2DVAR, with small eigenvalues corresponding with eigenvectors that 
describe small detail. 

 

3/5−k
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Figure 3   Wind component spectra of ASCAT-12.5km 10-m winds, Mode-S aircraft winds at 10 km height and 

collocated ECMWF winds at both 10 m for ASCAT and 10 km for Mode-S over 2010. 

 

2DVAR contains a number of parameters: the error variances of observations and background and 
the structure function parameters. The error variances are estimated by triple collocation 
(Vogelzang et al., 2011). As an example Figure 4 shows an ASCAT wind field on a 25 km grid on 17 
November 2009 around 17:40 UT obtained with the default 2DVAR settings. Figure 5 shows the 
same area, but now with the structure function cut-off reduced to 100 km. As a consequence, 
ambiguity removal errors are visible in the northwestern part of the wind field. 

Apparently, the short-ranged structure functions are not able to describe the inflow to the 
cyclone. The reason for this error is shown in Figure 6: a spurious developing low near 25°S and 
120°W. This example illustrates that mesoscale model errors in combination with mesoscale 
structure functions may be quite detrimental for 2DVAR and for meteorological analysis more in 
general. 
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Figure 4   ASCAT-25 wind field on 17-11-2009 around 17:40 UT in the Southern Pacific. Purple arrows indicate cells 
that have the variational quality control set, orange arrows cells that have the MLE quality control set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5   As Figure 4, but obtained with a structure function cut-off of 100 km. 
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Figure 6   Background belonging to Figure 4 andFigure 5. 

 

Background error covariances are analyzed at ECMWF using an ensemble of data assimilations 
(Isaksen et al., 2010). Lin et al. (2015) used ASCAT and triple collocation in categories of wind 
variability to verify the model-simulated ensemble background error covariances. It appears that 
local wind variability is an excellent indicator of background model error and reliable spatial maps 
of background error covariance may be produced based on the ASCAT data, as in Figure 7. 

We note from Figure 7 that background error covariances have substantial mesoscale variability, 
while the modelled covariances are on the synoptic scale. Nevertheless, areas of enhanced error 
covariances largely overlap in the left swath, while these areas are poorly correlated in the right 
swath in the plot. We note that the more relevant quantity of the estimated ratio b to o error has 
the same spatial patterns, but is somewhat moderated in amplitude due to the fact that the 
estimated observation error covariance also somewhat increases with increased local wind 
variability. Note that ECMWF, like many other data assimilation centers, assumes the estimated 
observation error covariances to be constant for simplicity. 

 



 

 

High resolution data 
assimilation guide 

Doc ID : NWPSAF-KN-UD-008 
Version : 1.2 
Date : 10-09-2018 

 
 

14 
 

 

 

 
Figure 7   (a) Estimated ECMWF background wind errors from ASCAT L2 data, 3 January 2013, around 0900 UTC, (b) 

the collocated EDA background errors. The color bars are in m s−1 (from Lin et al., 2016). (c) RMetS 2016. 
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 How to improve the analysis 4

In order to assimilate mesoscale features into a NWP model, one should use realistic values for the 
error variances and structure functions. Error variances of observations and background may be 
found using triple collocation (Vogelzang et al., 2011). Fitting structure functions may be obtained 
from ASCAT observations as these have excellent spatial sampling and no error correlations on the 
NWP model scale (Vogelzang and Stoffelen, 2017). Spatial o-b difference structures may thus be 
attributed to background error correlation in the following way: In the homogeneous and isotropic 
case the error autocorrelations for the longitudinal and transversal wind components,  and , 
read (Daley, 1998) 

  (3a) 

  (3b) 

with  and  the autocorrelations of the stream function and velocity potential.  and  
are length scales, and  is the divergence/rotation ratio.  and  are observables, while  
and are the structure functions that make up the background error covariance matrix. 
Vogelzang and Stoffelen [2011] show how equations (3a-b) can be solved for  and . In the 
case of 2DVAR, this procedure leads to velocity potential and stream function structure functions 
with a long range, but to wind velocity increments with a short range that support mesoscale 
analysis. 

Figure 8 shows the impact of the numerical structure functions as the spectral ratio of the 
resulting analysis with the default analysis as a function of . Indeed application of 
numerical structure functions increases the information content of the analysis at small and 
intermediate scales considerably: up to a factor of 6 for  at scales around 150 km. Indeed, 
collocated spectra of b, a and o show that the structure functions obtained from o are able to 
elevate the a spectra above the b spectra and towards the o spectra on scales of a few hundred 
kms (Lin et al., 2016). 
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Figure 8   Spectral ratio of analysis increment amplitudes obtained with numerical structure functions based on 

ASCAT o-b and amplitudes based on the default Gaussian structure functions..  

 

 
Figure 9   2DVAR analysis fields obtained with default background error covariances (left) and ASCAT-based 

numerical ones (middle), with corresponding selected ASCAT wind field (right). The color legend for the left and 
middle plot provides wind speed in m s-1, while for the right plot the retrieval residual is shown in multiples of the 

mean standard deviation, where negative (positive) values indicate stable (variable) flow. 

 

Figure 9 shows a typical case of the default and updated 2DVAR analysis fields, where the 
enhanced information content by using the ASCAT-based background error covariances is evident. 
The right panel shows that areas of stable flow are divided by areas of variable flow, which 
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generally appear near convection, lows, squall lines or fronts. These are now better visible in the 
middle 2DVAR analysis. 

The background error structure functions obtained from ASCAT were also applied to 2DVAR for 
pencil-beam scatterometers, confirming their suitable and beneficial spatial filtering properties 
(Vogelzang and Stoffelen, 2018). 

Last, but not least, we note that conceptual differences between 2DVAR and 4D-var may not be 
large, but their practical use and objectives are slightly different. In this case, mesoscales are 
added to b in order to fit the scatterometer winds and thus improve ambiguity selection, resulting 
in a more complete mesoscale wind energy spectrum in a. However, the energy density spectrum 
of b is governed by the dynamical closure of the NWP model, which implies that enhanced 
variability in a will be filtered out by the forward model equations in only a few model time steps 
(Skamarock, 2004). As such, in mesoscale data assimilation, it is crucial that observations are 
assimilated in the NWP model space representation. A second difference is that observation 
weights may be increased in 2DVAR to closely fit the scatterometer winds, since our interest is 
solely to improve the analysis for ambiguity selection. Using the same weights in 3D- or 4D-var 
may lead to overfitting artefacts outside the scatterometer swath and in the upper air, leading 
potentially to dynamical unbalance. This should obviously be prevented at all times and local or 
average analysis impact structure may be inspected to diagnose for such detrimental effects. 
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 The problem of mesoscale data assimilation 5

Figure 2 depicts NWP mesoscale wind data assimilation. Figure 3 shows that 3D turbulence is not 
well represented in global NWP; the figure shows horizontal scales, but also vertical scales are 
lacking (Houchi et al., 2010) as expected for 3D flow. Mesoscale modelling usually starts with 
dynamically downscaled global NWP fields and soon after spinning the NWP model up, enhanced 
mesoscale variability will appear. Winterfeldt et al. (2011) verified the difference between the 
downscaled fields and the input global NWP field with QuikSCAT winds over sea as shown in Figure 
10.  

 

 
Figure 10   Differences global minus downscaled of variances obtained by verifying the fields with QuikScat winds. 
The color represents the local value normalized by the largest variance of model fields minus QuikScat. Oceans are 

blue implying noise generation by dynamical downscaling (from Winterfeldt et al., 2011). © RMetS 
 

The dynamically downscaled variance indeed degrades the verification with QuikSCAT over open 
sea, even though the downscales fields in principle better resolve the 3D turbulent scales 
observed by QuikScat. Seemingly, the generated scales are meteorologically colored noise rather 
than real variability. This comes as no surprise as there is no physical forcing over open sea to lock 
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the turbulent scales and the generated mesoscale variability will be random. Near orography and 
coastal areas more in general, dynamically downscaled variability appears more truthful, as 
expected, as orographic flow and land-sea breezes are better resolved. To capture the amplitude 
of the model noise, ensemble data assimilation systems have been devised, that naturally 
distinguish the determined variance (ensemble mean) from the undetermined variance (ensemble 
spread). Model noise contributes to o-b differences and thus affects analysis quality. 

As an example, Marseille and Stoffelen (2017) tested o-b versus spatial aggregation of the 
mesoscale model state, in this case HARMONIE. They used scatterometer data from the Chinese 
HY-2A scatterometer, HSCAT, processed to 50-km sampled winds at KNMI. The HARMONIE 
effective horizontal resolution was diagnosed to be ~25 km at a grid distance of grid 2.5 km. The o-
b wind component difference is excessively large without temporal interpolation and the need and 
expected benefit of temporal interpolation was thus confirmed. With adequate temporal and 
spatial interpolation through the so-called observation operator, the o-b (u, v) wind component 
standard deviation amounted to (1.36, 1,29), while after averaging the model state to the HSCAT 
samples at 50 km size, it reduced to (1.25, 1.18), which amounts to a reduction of 16% in the o-b 
vector difference. The standard deviation of o-b (u, v) differences of HSCAT with respect to 
ECMWF (6-hour forecast) amounts to (1.09, 1.18), or a 27% reduction with respect to HARMONIE 
at full resolution. As shown in Figure 3 the ECMWF model resolution is ~150 km over the open 
ocean and almost equal to the deterministic resolution, conform Figure 2. Obviously, a smaller o-b 
may result in a better analysis when it is used as an innovation to inform the deterministic model 
state. 

We may write 

 𝑜𝑜 = 𝑡𝑡 + 𝜀𝜀𝑂𝑂 + 𝜀𝜀𝑅𝑅 (4) 

 𝑏𝑏 = 𝑡𝑡 + 𝜀𝜀𝐷𝐷 + 𝜀𝜀𝑁𝑁  (5) 

with 𝑡𝑡 defined as the truth on deterministic scales. 𝜀𝜀𝑂𝑂 is defined as the observation error on the 
scale of the model resolution and 𝜀𝜀𝑅𝑅 is the true variance on the scales of the model noise (see 
Figure 2). 𝜀𝜀𝐷𝐷 is the model error on the deterministic scales and 𝜀𝜀𝑁𝑁 the model noise. By definition, 
the errors and the truth on the different scales are independent, i.e., 〈𝑡𝑡𝜀𝜀𝑂𝑂〉 = 〈𝑡𝑡𝜀𝜀𝑅𝑅〉 = 〈𝜀𝜀𝑂𝑂𝜀𝜀𝑅𝑅〉 = 0, 
〈𝑡𝑡𝜀𝜀𝐷𝐷〉 = 〈𝑡𝑡𝜀𝜀𝑁𝑁〉 = 〈𝜀𝜀𝐷𝐷𝜀𝜀𝑁𝑁〉 = 0. Then  

 〈(𝑜𝑜 − 𝑏𝑏)2〉 = 𝜎𝜎𝑂𝑂2 + 𝜎𝜎𝐷𝐷2 + 𝜎𝜎𝑅𝑅2 + 𝜎𝜎𝑁𝑁2  (6) 

where all errors 𝜀𝜀 in eqs. (4-5) have expected standard deviation 𝜎𝜎. Further, 〈𝜀𝜀𝑂𝑂𝜀𝜀𝐷𝐷〉 = 〈𝜀𝜀𝑂𝑂𝜀𝜀𝑁𝑁〉 = 0 
and 〈𝜀𝜀𝑅𝑅𝜀𝜀𝐷𝐷〉 = 〈𝜀𝜀𝑅𝑅𝜀𝜀𝑁𝑁〉 = 0, since the latter errors are true variance and synthetic model variance 
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(noise), while the former errors are each on different scales and thus not correlated. Finally, the 
weight W determines the analysis increments in this simplified equation at observation positions 

 𝑎𝑎 − 𝑏𝑏 = 𝑊𝑊(𝑜𝑜 − 𝑏𝑏) (7) 

Following eq. (6) a will thus be effected by model noise 𝜀𝜀𝑁𝑁, observation representation error 𝜀𝜀𝑅𝑅, 
observation error 𝜀𝜀𝑂𝑂 , and model error 𝜀𝜀𝐷𝐷 . We note that both 𝜀𝜀𝑅𝑅  and 𝜀𝜀𝑁𝑁  contribute to the 
difference o-b, but where these are really defined as wind variability on the same scales. Their 
contributions to o-b present a so-called double penalty, while the analysis should not target these 
scales as these cannot be well determined. In other words, o-b does not only inform the (to be) 
determined dynamical scales targeted by the analysis, but also includes a double penalty.  

Observations need to be accurate and well resolved for mesoscale data assimilation and they may 
be better used in mesoscale NWP data assimilation in principle. However, some complications 
arise. Following conventional logic, one may be tempted to assimilate scatterometer winds at full 
resolution in a mesoscale data assimilation system. This would imply a scatterometer wind 
component error of about 0.8 m/s (Vogelzang et al., 2011). In addition, model noise variance (see 
above) would need to be added to the B matrix, which makes the background error covariances 
larger and more pronounced on the smaller scales. This is, the weight of the observations would 
be much increased, while the weight of the background is reduced. Moreover, the scale of the B 
error correlations is reduced, allowing more small scales to be informed in the analysis step, i.e., 
small scales that cannot be fully determined (see paragraph below). The addition of uncertain 
small scales in the analysis moreover will go at the expense of informing the larger scales well. 
Uncertain B in case of small observation error leads to analysis updates above or close to the 
observations that are unrealistic and often denoted as overfitting, caused by inaccurate and high 
innovation weights. Overfitting is known to lead to so-called spin-up that essentially represents a 
dynamical interference with the information brought by the new observations in the analysis step, 
which latter information is then lost in further model noise generation. 

4D structures that cannot be determined, but are part of the analysis will result in deformed 
dynamical structures. This problem is called “aliasing” 2 in engineering and Nyquist (1928) 
formulated a criterion to prevent aliasing, which is oversampling by a factor of two in all 
dimensions to prevent the generation of artificial waves (Moiré effect). The problem applies to 
meteorological analysis and is potentially aggravated by the dynamical development of these 
artificial waves in the high-resolution NWP model.  

                                                           
2 https://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem  

https://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
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How to prevent artificial dynamical waves? 3D turbulence potentially requires both horizontal and 
vertical sampling of structures to prevent aliasing. Moreover, time sampling may provide an 
additional observation constraint. Background error covariances are used to spatially project 
observed information, while 4D-var has a capability to fit observed temporal tendencies. These 
capabilities contribute to extending the determined scales to smaller wavelength. Fully optimized 
capability of these aspects at ECMWF leads to a deterministic resolution in the dynamically 
constrained areas over sea and in the upper air of about 150 km (see Figure 3). Over some land 
areas, more and accurate upper air wind profile observations may become available from 
airplanes, such that smaller 4D scales may be determined (de Haan and Stoffelen, 2012), but likely 
not at the rate of model resolution improvements in NWP. Therefore, the problem of model noise 
in data assimilation will be aggravated in the future. How could mesoscale models do better? 
Given the above, we could only do better (locally) if we assimilated more spatially and temporally 
dense (wind) observations and if we overcome the problem of mesoscale model noise in the data 
assimilation step.  

Ensemble data assimilation encapsulates the concept of model noise and of the deterministic 
scales that are represented in the ensemble mean. This is, when the data assimilation ensemble 
would be sufficiently large to fully represent the model noise distribution and when the ensemble 
represents the model noise well, i.e., is run at full resolution. Given the expense of ensemble data 
assimilation, both conditions are usually not met. Moreover, each ensemble member is dealing 
with the double penalty in o-b and does not provide the best possible deterministic state. As a 
result, the shared true variance in the ensemble mean will be compromised. 



 

 

High resolution data 
assimilation guide 

Doc ID : NWPSAF-KN-UD-008 
Version : 1.2 
Date : 10-09-2018 

 
 

22 
 

 Guidance 6

In this report we sketch a new paradigm for measoscale wind data assimilation. It is motivated by 
the substantial variability on the fast mesoscales in the 3D turbulence regime and the lack of 
mesoscale observations to appropriately capture fast small-amplitude 4D structures. In this final 
chapter we provide guidance based on the content of the earlier chapters. 

Background error covariances are difficult to estimate. State-of-the-art methods use 4D-var and 
adaptive B covariances based on an ensemble of data assimilation in global NWP (EDA); see Figure 
7. In global NWP, the deterministic scale is generally quite close to the model resolution (cf. Figure 
3) and innovations are thus projected onto the deterministic scales. Background error variances 
may be statistically correct, but in any situation do not well represent the actual spatio-temporal 
structure of the real errors. Of course, if we knew these latter, we would not be writing this 
guidance report! Nevertheless, it is important to realize that the difference between estimated 
background error covariances and the actual model errors dominates the quality of an analysis. 
Following Figure 2 we suggest to project the innovations onto those scales that can be 
determined, which somehow excludes the scales where mesoscale model noise dominates. If 
model noise is represented in B, then the innovation o-b would be projected onto those noisy 
scales, which would likely result in rather artificial dynamical structures (aliasing) and less of the 
innovation would be projected onto the larger deterministic scales (see section 5).  

Model noise is however captured in b which is propagated into analysis noise too for every 
(ensemble) analsis, as elaborated in section 5. How can we prevent this? We may consider 
averaging the model state to reduce model noise and thus prevent a double penalty in data 
assimilation. This may be done while interpolating the model state to the observed location. 
Following the logic of Nyquist, we would average up to half the distance of the deterministic 
resolution, i.e., typically 100 km over sea and in the upper air. In analogy to “superobbing”, we 
may call this “supermodding”. It would much reduce 𝜎𝜎𝑁𝑁 in equation 6. 

To reduce 𝜎𝜎𝑅𝑅 in equation (6) superobbing may be applied, in addition to supermodding, up to half 
of the deterministic resolution. Extending the approach of Marseille and Stoffelen (2017) one may 
be tempted to spatially average o and b until we minimize o-b. Following equation (6) o-b may be 
reduced by reducing one of four terms, including 𝜎𝜎𝐷𝐷. However, reducing 𝜎𝜎𝐷𝐷 is not a good thing at 
all, since the deterministic scales include true observed and, importantly, true model variance. A 
better approach will be to diagnose all of o-b, b and o variance reductions while averaging b to bA 
on the deterministic scales 
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 〈𝑏𝑏𝐴𝐴2〉 = 𝜎𝜎𝑇𝑇2 + 𝜎𝜎𝐷𝐷2 (8) 

 〈𝑏𝑏𝐴𝐴2〉 − 〈(𝑜𝑜 − 𝑏𝑏𝐴𝐴)2〉 = 𝜎𝜎𝑇𝑇2 − 𝜎𝜎𝑂𝑂2 − 𝜎𝜎𝑅𝑅2 (9) 

 〈𝑏𝑏2〉 − 〈(𝑜𝑜 − 𝑏𝑏)2〉 = 𝜎𝜎𝑇𝑇2 − 𝜎𝜎𝑂𝑂2 − 𝜎𝜎𝑅𝑅2 (10) 

where 𝜎𝜎𝑇𝑇2 corresponds to the true variance in the deterministic scales or, practically, common 
scales between observations and background. As long as averaging cancels only part of 𝜎𝜎𝑁𝑁2 and 𝜎𝜎𝑅𝑅2, 
the variance in (9) and (10) remains the same. As soon as true common variance is averaged out in 
b the difference in (9) will be reduced. The difference 〈𝑜𝑜𝐴𝐴2〉 − 〈(𝑜𝑜𝐴𝐴 − 𝑏𝑏)2〉 has similar properties 
and may be diagnosed at the same time for different averaging lengths in case the observations 
are spatially dense (superobbing).  

In Figure 3 aircraft winds are provided at flight level. Note that vertical averaging over 1 km will 
typically imply wind changes of 4 m s-1, as this is the mean atmospheric vertical wind shear (Houchi 
et al., 2010) and 1-km vertical variance corresponds to a horizontal variance over 100 km as the 
horizontal/vertical aspect ratio of 3D turbulence is typically 100 (Nastrom and Gage, 1985). 

Supermodding may be implemented in the background interpolation operator in data assimilation, 
where the horizontal/vertical model space context should a priori be made available to the 
computer processor working on the observation innovation for efficient implementation.  

As stated earlier, a smooth B, supermodding and superobbing up to the deterministic dynamical 
scales would also improve ensemble data assimilation, due to the avoidance of a double penalty in 
the model noise regime.  
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