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1 Introduction 
Scatterometry 

Spaceborne scatterometers are able to measure the surface wind over the oceans at global coverage with a 
resolution of about 25 km. The surface wind vector is obtained from numerical inversion of the geophysical 
model function (GMF), an empirical relation between wind vector and observation geometry on one hand 
and radar backscatter of the ocean surface on the other [Stoffelen, 1998; Portabella, 2002]. If n  observations 
of the radar backscatter are available, each differing from the others in (at least) incidence angle, azimuth 
angle, radar frequency or polarization, then the GMF defines a folded surface of dimension 2 in n -
dimensional measurement space, where wind speed and wind direction vary along the 2-dimensional surface. 
The measured wind vector corresponds to the point on the GMF surface that lies closest to the measurement 
point. 

Normally, this procedure does not lead to a unique solution, because the measurements are noisy and 
because the GMF surface may fold to itself, for example the upwind and downwind surfaces may be in close 
proximity of each other. For ERS and ASCAT, for instance, the GMF in measurement space takes the form 
of a folded cone with two sheets; the distance between the sheets being smaller than the typical size of the 
measurement error. 

In the multi solution scheme (MSS), the possible solutions are not restricted to those points on the GMF that 
have minimum distance to the measurement point. In the MSS a large number of a priori probable points on 
the GMF is retained, up to 144, and the probability of a certain GMF point being the correct solution is 
proportional to its distance to the measurement point. 

The process of selecting the most probable solution is called ambiguity removal. Several schemes have been 
proposed [Stoffelen, 1998;Portabella, 2002], and a number of schemes is implemented in the genscat library 
of KNMI, which lies at the base of the scatterometer processors for SeaWinds (SDP) and ASCAT (AWDP) 
that are developed within the NWPSAF project. 

Aims and scope 

This report describes one of the ambiguity removal methods called two-dimensional variational ambiguity 
removal (2DVAR). 2DVAR uses a model prediction (either the NCEP model or the ECMWF model) to 
estimate the best solution. The resulting wind field is constrained by basic physical laws. 
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The report is detailed and technical. It is intended for understanding the 2DVAR implementation in genscat 
from the mathematical and methodological point of view. The modules, routines, and data structures are 
described in the user manuals of AWDP and PenWP [Verhoef et al., 2018a,b]. 

Overview 

Chapter 2 starts with the formulation of the 2DVAR problem. The cost function is introduced as well as the 
grid on which the 2DVAR problem is solved. 

Chapter 3 shows how the background part of the cost function can be transformed such that it becomes a 
diagonal quadratic form. The resulting transformation, called the conditioning transformation, consists of a 
Fourier transformation and a Helmholz transformation of the square root of the background error covariance 
matrix defined in terms of the velocity potential and the stream function in wavenumber space. It greatly 
reduces the numerical load. The use of standard FFT algorithms leads to an efficient implementation. 

The variational problem is solved by numerically minimizing the cost function expressed in terms of the 
velocity potential and the stream function in the frequency domain. The minimization procedure is of a quasi 
Newton type and needs the gradient of the cost function. Chapter 4 shows how the gradient of the cost 
function is obtained using the so-called adjoint model. In terms of linear algebra, the adjoint of a matrix is its 
Hermitian conjugate, i.e., the complex conjugate of its transpose. In chapter 4 the adjoint model for 2DVAR 
is derived. 

Chapter 5 deals with the subtleties involved in going from the spatial domain to the frequency domain and 
vice versa using FFT algorithms. These are caused by the fact that the wind component fields in the spatial 
domain are real, whereas those in the frequency domain are complex. Symmetry relations keep the number 
of independent field components the same in both representations, but packing of the independent field 
components in the frequency domain into a control vector requires careful bookkeeping that also affects the 
calculation of the cost function and its gradient. 

Chapter 6 describes the error covariance model for the background (model) wind field which determines to a 
large extend the behaviour of 2DVAR. The background error correlations are frequently referred to as 
structure functions. 

Chapter 7 describes how the 2DVAR implementation can be tested with the so-called single observation test. 
This problem can be solved analytically, and proved to be of crucial importance for getting the 
normalizations in the genscat 2DVAR implementation right. It is shown how the definition of the structure 
functions affects the 2DVAR analysis. The convergence properties of the numerical minimization are 
discussed. 
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Chapter 8 lists some notes on the 2DVAR implementation in genscat. The report ends with a resume of the 
most important equations defining 2DVAR. The appendices contain a number of detailed derivations that 
may obscure the main line of reasoning in the text. 
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2   Formulation of the problem 
General 

The probability that x  expresses the true state of the surface wind field given a vector of possible 
scatterometer wind solutions (ambiguities) k

ov  equals )( k
oP vx . It satisfies [Lorenc, 1986] 

 ,)()()( b
k
o

k
o PPP xxxvvx ∝  (2.1) 

where )( xv k
oP  is the conditional probability that the ambiguous scatterometer wind solutions k

ov  are 
observed given the state vector x , with k the ambiguity index, and )( bP xx  is the conditional probability 
that x  represents the surface wind field given bx , the prior background information (i.e., a model prediction 
of the wind field). The state vector x  is called the analysis. The most likely estimate of x  is found by 
maximizing (2.1), or, equivalently, minimizing the cost function J  given by 

 .)(ln2)(ln2),,( b
k
ob

k
o PPJ xxxvxxv −−=  (2.2) 

More detailed information on the scatterometry problem can be found in [Stoffelen, 1998] and [Portabella, 
2002]. A description of the 2DVAR method has been given by De Vries et al. [2005] 

Incremental formulation 

To increase the computational efficiency of 2DVAR, the analysis increments xδ  are used rather than the 
state vector x  itself, with 

 ,bxxx −=δ  (2.3a) 

and 

 .b
k
o

k xvv −=δ  (2.3b) 

This is called the incremental formulation. For each scatterometer observation the background field is 
assumed to be known at the same position and time, if necessary from interpolation. The result is that the 
2DVAR procedure starts from the model wind field as a first guess. The cost function can be rewritten as 

 ,J,J,J b
k

o
k )()()( xxvxv δδδδδ +=  (2.4) 

with oJ  the observational term and bJ  the background term. 
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Packing 

The analysis wind components are packed in the state vector x  (or xδ  in the incremental approach) which 
is used in the minimization procedure. In that context, the state vector is also referred to as the control vector. 
The analysis field is calculated on a regular grid 

 .,...,2,1,,...,2,1,),( 21 NjNiyx ijij ==  (2.5) 

The analysis or control vector x  has 212 NN  components that are ordered as indicated in figure 2.1, with 

 ,),(,),( ijijijijijij yxvvyxuu ==  (2.6a) 

 ,y,xvy,xvv,y,xuy,xuu ijijbijijijijijbijijij )()()()( −=−= δδ  (2.6b) 

 ,y,xvy,xvv,y,xuy,xuu ijijbijij
o

k
o
k,ijijijbijij

o
k

o
k,ij )()()()( )()()()( −=−= δδ  (2.6c) 

where ),( ijij vu  is the analysis field, )( ijij v,u δδ  the incremental analysis field, and )( )()( o
k,ij

o
k,ij u,u δδ the 

incremental observed ambiguous wind field, with ijij Mkk ,...,1==  the ambiguity index at cell ),( ji . 
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Figure 2.1   Packing of the velocity field variables into control vectors. 

 

The order of the elements in the control vector is not relevant for the minimization procedure itself, but it 
will help to facilitate the derivation in the next sections. Note that the wind fields are packed according to 
their component and not according to their position. 
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The background term 
Assuming that the errors in the background wind field are Gaussian 

 [ ] ,)()(exp)( 1
2
1 xBxx δδδ −−∝ TP  (2.7) 

with B  the matrix of background wind error covariances and the superscript T  indicating that the transpose 
of  the vector or matrix should be taken. This yields 

 ,CJ T
b += − )()()( 1 xBxx δδδ  (2.8) 

with C  a constant that may be neglected during minimization. Note that taking the transpose suffices since 
xδ  is a real vector. In the general case the Hermitian conjugate (complex conjugate of the transpose) should 

be taken. 

In terms of the unpacked velocity fields, the background term of the cost function reads 

 .)(
21 ,

1,

221∑
=

− +=
NN

ji
ijijijb vuBJ δδ  (2.9) 

This equation holds if the background field is considered as a discrete quantity on a grid. If it is considered as 
a continuous field, the background cost function reads 

 
[

] .),(),,,(),(

),(),,,(),(

1

1

yxvyxyxByxv

yxuyxyxByxuydxddydxJ b

′′′′

+′′′′′′=

−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

−∫ ∫ ∫ ∫
δδ

δδ
 (2.10) 

In 2DVAR the second point of view is taken, assuming that all quantities are sampled on a grid that is large 
and dense enough to assure convergence of the integrals. 

The observational term 
The observational term in 2DVAR is most easily expressed in terms of the orthogonal components of the 
horizontal wind vector fields. It reads [Stoffelen and Anderson, 1997] 

 [ ] ,)()()(exp)( 1
2
1

0 ∑ −+−∝
k

kTk
k

k pP vFOvxv δδ  (2.11) 

where the summation extends over all possible solutions (ambiguities). In (2.11), O  stands for the 
covariance of the observation errors and F  for that of the representation errors (errors caused by spatial and 
temporal differences between observation and background). The probability of ambiguity number k  being 
the correct solution is given by kp .  
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The observation cost function in terms of the unpacked wind velocity fields reads 

 
( ) ( )

,ln2

/1

1
2

2)(
,

2

2)(
,∑ ∑

−

=

−
































−

−
+

−
=

m

p

K

k

p

k
v

o
kmm

u

o
kmm

o
m

p
vvuu

J
ε

δδ

ε

δδ
 (2.12) 

with m  the observation index that runs over all observations, mK  the number of ambiguities at observation 
m , and uε  and vε  the expected standard deviation of the scatterometer wind components. The default 
values for all scatterometers are == vu εε 1.8 m/s. The parameter p  is an empirical parameter that gives 
optimal separation between multiple solutions for 4=p . The analysis increments ),( mm vu δδ  are 
interpolated from their grid values ),( ,, jiji vu δδ  to the position of observation m . 

Note that if there is only a single unambiguous observation )(
1
ou  present, (2.12) reduces to (an unambiguous 

observation has unit probability) 

 
( ) ( )

.2

2)(
11

2

2)(
11

v

o

u

o
SO
o

vvuu
J

ε

δδ

ε

δδ −
+

−
=  (2.13) 

The 2DVAR batch grid  
The wind speed vector components are usually given as the west-to-east (zonal) component u  and the south-
to-north (meridional) component v . 2DVAR works in the so-called batch grid that is aligned with the 
satellite orbit. The components in the 2DVAR batch grid are the transversal wind speed t , perpendicular to 
the satellite track, and the longitudinal wind speed l , parallel to the satellite track. They are related to u  and 
v  by  

 ,
cossin
sincos

ijij

ijij

vul
vut

θθ
θθ

+−=
+=

 (2.14) 

where ijθ  is the orientation of the wind vector cell (WVC) with indices ),( ji , measured counterclockwise 
from the north. It varies continuously from WVC to WVC, slowly near the equator and more rapidly near the 
poles. Vogelzang [2006] compares various methods to obtain the orientation of a WVC given its coordinates. 

Since the relation between ),( vu  and ),( lt  is an ordinary rotation, the cost function does not change value 
or form under this change of variables. Note that t  and l  have the same role in the 2DVAR batch grid as u  
and v  in the geographical grid. Therefore the transversal and longitudinal wind speed components are often 
referred to as u  and v  in the 2DVAR software. 
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3  Transformation of the cost function 

Overview 

Equations (2.10) and (2.12) completely specify the background and observational part of the cost function, 
respectively. Both equations are assumed to be formulated in terms of the transversal and longitudinal wind 
components ),( lt . The total cost function can be calculated once a form for the background wind covariance 
matrix B  and an efficient way to compute its inverse 1−B  are established. This can be achieved by a series 
of transformations: 

 Fourier transformation of the wind field from the spatial domain to the frequency domain; 
 Helmholtz transformation from wind fields to potential fields in the frequency domain; 
 Normalization with the error covariances (error variances and error autocorrelations). 

These three transformations together are called the preconditioning transformation. Its effect is to transform 
B  expressed in terms of the wind components ),( lt  in the spatial domain into the identity matrix in terms of 
the normalized potential fields )ˆ,ˆ( )()( nn ψχ in the frequency domain. 

The wind error covariances are calculated from the wind vectors at two points. Following Daley [1991] it is 
assumed that the covariances are homogeneous (i.e., independent of the absolute location of the pair of 
points) and isotropic (i.e., only dependent on the distance between the points). In that case the matrix B  is 
symmetric and positive definite, so its inverse certainly exists. With ..  denoting the wind error covariance, 
the matrix B  can be written in terms of the wind components in the spatial domain as 

 .
BB
BB

l,lt,l
l,tt,t

lllt

tltt
TT

TT

l,t 







=














=

δδδδ
δδδδ

B  (3.1) 

The background contribution to the cost function reads, see (2.8) 

 ,J l,t
T

b xBx δδ 1−=  (3.2) 

which can be interpreted as a summation like in (2.9) or an integration like in (2.10) 

Fourier transformation 

The first step in the preconditioning is to go from the spatial domain to the frequency domain by Fourier 
transformation (denoted by F ). This transforms the matrix-vector multiplications from convolutional form to 
ordinary multiplication form. The transformation reads tFt̂ δδ =  and lFl̂ δδ = , the hat indicating that the 
quantity is in the frequency domain. On a regular grid with grid size x∆  in the position domain and grid size 



  

Two-dimensional variational 
ambiguity removal (2DVAR) 

Doc ID : NWPSAF-KN-TR-004 
Version : 1.4 
Date : 09-05-2017 

 

 

 13  

1)( −∆=∆ xNp  in the frequency domain, with N  the number of grid points, the discrete Fourier 
transformation and its inverse of a function f in two dimensions read [Press et al, 1988] 

 ,ˆ
1 1

2

,
2

, ∑∑
= =







 +

∆=
M

m

N

n

N
ln

M
kmi

nmlk eff
π

 (3.3a) 

 ,ˆ1
1 1

2

,2, ∑∑
= =







 +−

∆
=

M

k

N

l

N
ln

M
kmi

lknm ef
MN

f
π

 (3.3b) 

where yx ∆=∆=∆ . Note that the normalization factor for the inverse transform equals the grid sizes in 
frequency space. See appendix A for more detailed information on the Fourier transform. 

After Fourier transformation, the background contribution to the cost function reads 

 ,ˆˆJ l̂,t̂
T

b xBx δδ 1−=  (3.4) 

with x̂δ  the control vector in the frequency domain. 

Helmholtz transformation 

The second step is to express the wind speed increments )( l̂,t̂ δδ  in the frequency domain in terms of the 
velocity potential and the stream function )( ψδχδ ˆ,ˆ  by using the inverse  transformation. 

The forward  operator ),( 21 HH=H  for continuous functions in the spatial domain reads 

 ,),(),(),](,[),( 1 y
yx

x
yxyxHyxt

∂
∂

−
∂

∂
==

ψχψχ  (3.5a) 

 ,),(),(),](,[),( 2 x
yx

y
yxyxHyxl

∂
∂

+
∂

∂
==

ψχψχ  (3.5b) 

with the square brackets indicating a function as argument of an operator. Note that the forward  
transformation transforms potentials into horizontal wind components, while the inverse transformation 
transforms horizontal wind components into potentials. In appendix B it is shown that the forward  
transformation in the frequency domain reads 

 .q,pˆqĥq,pˆpĥq,pt̂ )()()()()( ψχ −=  (3.6a) 

 .q,pˆpĥq,pˆqĥq,pl̂ )()()()()( ψχ +=  (3.6b) 

with 

 .ippĥ π2)( −=  (3.7) 
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It will be shown later that 2DVAR only needs the forward  transformation and its complex conjugate, but 
expressed on a discrete grid. Equations (3.6) and (3.7) are immediately discretized to 

 [ ] ,ˆˆˆˆ2ˆ
,,, nmnnmmnm qpit ψχπ −−=  (3.8a) 

 [ ] ,ˆˆˆˆ2ˆ
,,, nmmnmnnm pqil ψχπ +−=  (3.8b) 

with 

 ,,
21 ∆

=
∆

=
N

nq
N
mp nm  (3.9) 

the spatial frequencies resulting from the discrete Fourier transformation. 

Definition of the background error covariance matrix 
After the inverse Helmholz transformation, the background contribution to the cost function is given by 

 ,BJ ˆ,ˆ
T

b ξξ δδ χψ
1−=  (3.10) 

with ξδ  the control vector in terms of the velocity potential and the stream function in the frequency 
domain. The error covariance matrix given by 

 .
BB
BB

ˆ,ˆˆ,ˆ
ˆ,ˆˆ,ˆ

ˆˆˆˆ

ˆˆˆˆ
TT

TT

ˆ,ˆ 







=














=

ψψχψ

ψχχχ
ψχ δδδδ

δδδδ
ψψχψ
ψχχχ

B  (3.11) 

The advantage of applying these transformations is that the cross covariances in B , the ones between uδ  
and vδ , that are not negligible in terms of the horizontal wind components in the spatial domain become 
almost zero,  

 .
B

B

ˆˆ

ˆˆ
ˆ,ˆ 








≈

ψψ

χχ
ψχ 0

0
B  (3.12) 

Now, the matrix has become diagonal. The last step is to factorize it into error variances Σ  and error 
correlations Γ  by 

 ,ˆ,ˆ ΣΓΣB =ψχ  (3.13) 

with 

 .
0

0
,

0
0

ˆˆ

ˆˆ

ˆ

ˆ









Γ

Γ
=








Σ

Σ
=

ψψ

χχ

ψ

χ ΓΣ  (3.14) 
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The stream function and the velocity potential are not observable quantities, but their error variances and 
error correlations can be derived from the wind field, either from theory or from measurements (or a 
combination of the two). See section 6 for more information. 

Once the matrix is diagonal, it is inverted easily: the inverse matrix is also diagonal and each diagonal 
element in the inverse matrix is the inverse of the corresponding element in the original matrix. Also the 
square root of a diagonal matrix can be easily found: it is a diagonal matrix in which each diagonal element 
equals the square root of the original element. The background contribution to the cost function finally reads 

 .ˆˆˆJ /
ˆ,ˆ

/
ˆ,ˆ

T
ˆ,ˆ

T
b ξBBξξBξ δδδδ ψχψχψχ

21211 −−− ==  (3.15) 

In the original formulation in the spatial domain, equation (2.8) evaluation of the cost function would require 
a full matrix-vector multiplication, whereas in the frequency domain only multiplication with the diagonal 
components is required (convolutional form). Therefore this step is also referred to as convolution. 

Preconditioning and unconditioning transformation 

The transformations can be combined to the so-called preconditioning transformation 

 ,F/
ˆ,ˆ xCxHBξ δδψχ == −− 121   (3.16) 

where ξ  is the preconditioned state vector. It is obtained from packing the increments in the potential fields 
in the frequency domain, normalized with the square root of the error variances and error correlations. This is 
the state vector actually used in the 2DVAR minimization process, and therefore the inverse of (3.16) is 
needed in 2DVAR. This is called the unconditioning transformation U  and it satisfies 

 .2/1
ˆ,ˆ

1 ξUξHBx == −
ψχδ F  (3.17) 

Figure 3.1 shows the unconditioning transformation schematically. 

The preconditioning transformation reduces the background error covariance matrix to the identity matrix, so 
the background cost function is expected to become simply the scalar product of the conditioned control 
vector with itself. In chapter 5 it will be shown that there are some subtleties involved due to the nature of 
the numerically calculated Fourier transform. The final form of the background cost function equals 

 ,wqpJb ∑∆∆=
λ

λλξ
2  (3.18) 

with the index λ  running over all components of the control vector and the weights λw  determined by the 
symmetry properties of the Fourier transform (see chapter 5). 
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Frequency domain  Spatial domain 

Control 
vectors  Fields  Fields  Control 

vectors 

ξ   →unpack  )( )()( nn ˆ,ˆ ψδχδ     
⇐ Normalized 

potentials 

  ↓↓ − 21 /
ˆ,ˆ ψχB      

Potentials ⇒  )( ψδχδ ˆ,ˆ     ⇐ Potentials 

  ↓↓ H      

Rotated ⇒ 

wind speeds 
 )ˆ,ˆ lt δδ(   →

-1F  ),( lt δδ   
⇐ Rotated 

wind speeds 

    ↓↓ −1R    

EW/NS ⇒ 

wind speeds 
   )( vu δδ ,   xδ  

Figure 3.1   Scheme of the unconditioning transformation (the yellow path). 

 

The origin of the normalization factor in front of the summation in (3.18) can be understood by writing the 
background cost function in terms of the normalized potential fields in the frequency domain, )(nψ̂  and )(nχ̂ , 
as 

 ∫ ∫
∞

∞−

∞

∞−

+= .)],(ˆ[)],(ˆ[ 2)(2)( qpqpdpdqJ nn
b χψ  (3.19) 

If  (3.19) is evaluated on a regular grid using first-order quadrature (higher order is not necessary since the 
FFT algorithm used for the Fourier transformation is also first-order) one obtains 

 ,)],(ˆ[)],(ˆ[ΔΔ 2)(2)(

11
ji

n
ji

n
M

j

N

i
b qpqpqpJ χψ += ∑∑

==

 (3.20) 

where the factor qp∆∆  can be moved in front of the summation. See also chapter 5. 
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The observation term remains the same,  

 
( ) ( )

,ln2

/1

1
2

2)(
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2)(
,∑ ∑

−

=

−
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−
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−
=
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p
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l

o
kmm
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o
kmm

o
m

p
lltt

J
ε

δδ

ε

δδ
 (3.21) 

with m  the observation index running over all observations, mK  the number of ambiguities of observation 
m , and m/s8.1== lt εε . 

The horizontal wind component increments in the spatial domain, ijtδ  and ijlδ  are obtained from unpacking 
and unconditioning the control vector ξ . In this way, all transformations are contained in the background 
part of the cost function. 
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4   Gradient of the cost function 
The minimization is done using routine LBFGS from J. Nocedal [Liu and Nocedal, 1989]. This is a freeware 
routine for minimization using the limited memory BFGS method. The routine not only needs the value of 
the cost function for arbitrary values of the control vector, but also its gradient with respect to the control 
vector. 

The background term 

The background contribution to the cost function is given by (3.18) and reads 

 .2∑∆∆=
λ

λλξwJ qpb  (4.1) 

This can be considered as a summation or an integral, see (3.19). Its gradient with respect to the control 
vector is simply 

 ,2 λλ
λ

λ ξw
J

J qp
b

b ∆∆=
∂
∂

=∇
ξ

 (4.2) 

which is a vector in preconditioned control vector space. Section 5 addresses the question how to express 
(4.1) and (4.2) in terms of the normalized potential fields in the frequency domain. 

The observation term 

The observation contribution to the gradient is 

 ,
ξ∂

∂
=∇ o

o
J

J  (4.3) 

which is again a vector in preconditioned control vector space, i.e., the control vector in terms of the 
normalized potential fields in the frequency domain. This must be transformed to an expression in terms of 
the velocity fields in the spatial domain (ordinary control vector space), because the observation source term 
is defined in that representation. In matrix-vector notation this can be written as (see appendix D) 

 ,*

x
U

δ∂
∂

=∇ o
o

J
J  (4.4) 

where *U  is the adjoint of the preconditioning transformation U  defined in (3.17), i.e., the complex 
conjugate of the transpose of U . In appendix D it is also shown that 
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 ( ) ,*2/1
ˆ,ˆ

2/1
ˆ,ˆ

1* FF TT HBHBUU ψχψχ === −  (4.5) 

since the Fourier transform is self-adjoint and the background error correlations are real. 

The derivatives of oJ  in the spatial domain are easily obtained from (3.20). Writing 

 
( ) ( )
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δδ
 (4.6) 

the components of the gradient in the spatial domain equal 
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 (4.7) 

with 
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 (4.8) 

Note that the factors 1−− p  and p− in (4.7) and (4.8) cancel.  

In case of one single observation with unit probability, equations (4.6) and (4.7) simplify to 

 
( ) ( )
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2)(
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 (4.10) 
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5   Packing in the frequency domain 
In section 1 it was shown that the control vector in the spatial domain can be defined in terms of the 
horizontal wind speed components ),( ijij vu or, equivalently, ),( ijij lt  as depicted in figure 2.1. In particular, 
the control vector in the spatial domain has dimension 212 NN . Some care must be taken when defining the 
control vector in the frequency domain, because of the peculiarities of the Fast Fourier Transform (FFT() 
algorithm. Before moving to the full problem, some main characteristics will be discussed in a one 
dimensional example. 

One dimensional example 

Suppose a real function )(xf  with Fourier transform )(ˆ pf . When applying an FFT algorithm, the function 
f  is sampled at N  real values in the spatial domain, while f̂  is sampled at N  complex values in the 

frequency domain. As discussed by Press et al. [1988], these complex numbers are not independent because 
f̂ satisfies the symmetry relation 

 ,)(ˆ)(ˆ * pfpf =−  (5.1) 

the star indicating complex conjugation. This can easily be shown from the definition of the Fourier 
transform (A.1). 

On an FFT grid the sampling points in the spatial domain have coordinates ix  given by 

 ,,,1,)1( Niixi =∆−=  (5.2) 

assuming a square grid with size ∆ . The forward FFT operation returns the coefficients on a frequency grid 

jp  given by 

 ,,,1,ˆ
2
1

2
1 MMjjp j ++−=∆=   (5.3) 

where 

 .1ˆ
∆

=∆
N

 (5.4) 

Using (5.1), only the non-negative frequencies of p  are independent. The FFT algorithm returns the Fourier 
coefficients in a rather peculiar order [Press et al. 1988]. This is shown schematically in figure 5.1. The first 
coefficient, 1̂f , corresponds to zero frequency and is therefore real because it is simply the integral over the 
function f . The next coefficients, jf̂  for Nj 2

1,,2 = , are complex and correspond to frequencies 
∆− ˆ)1( j . The coefficient with index 12

1 += Nj  is the sum of the contributions at plus and minus the 
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maximum frequency ∆= ˆ
2
1

max Np . Because of (5.1) this coefficient is also real. The last coefficients with 
indices NNj ,,22

1 +=  correspond to the negative frequencies ∆−− ˆ)1( Nj  and these are the complex 
conjugates of the corresponding coefficients at positive frequency. Note that the coefficients which are each 
others complex conjugate lie symmetrically around the point with maximum frequency. 

 

1̂f  2f̂  3̂f  4f̂  5̂f  *
46

ˆˆ ff =  *
37

ˆˆ ff =  *
28

ˆˆ ff =  

0=p  ∆= ˆp  ∆= ˆ2p  ∆= ˆ3p  ∆±= ˆ4p  ∆−= ˆ3p  ∆−= ˆ2p  ∆−= ˆp  

Figure 5.1   Structure of the one dimensional Fourier coefficients in the frequency domain for N=8. The blue cells 
contain real coefficients, the red cells complex with conjugate pairs in the same shade of red. The frequency is given 

below. 

This implies that the N  complex Fourier coefficients in the frequency domain contain exactly N  
independent real numbers, see also figure 5.1. 

Two dimensional case 

In the two dimensional case, applicable to 2DVAR, the Fourier transform in the frequency domain,  
),(ˆ qpf , of a real function in the spatial domain, ),( yxf  satisfies 

 .),(ˆ),(ˆ * qpfqpf =−−  (5.5) 

In the spatial domain the 2DVAR batch grid is sampled on points ),( ji yx  with 

 
,,,2,1,)1(

,,,2,1,)1(

2

1

Njjy
Niix

j

i





=∆−=
=∆−=

 (5.6) 

assuming a square grid. An FFT operation returns the coefficients ),(ˆˆ
jiij qpff =  with 

 
,,,1,ˆ

,,,1,ˆ

22
1

22
1

12
1

12
1

NNjjq

NNiip

qj

pi





+−=∆=

+−=∆=
 (5.7) 

with 

 .1,1

21 ∆
=∆

∆
=∆

NN qp  (5.8) 

The ordering of the FFT coefficients in the frequency domain is analogous to the one dimensional case and 
sketched in figure 5.2. 
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11 =i     * 

12
1

1 ,,2 Ni =     * 

112
1

1 += Ni     * 

112
1

1 ,,2 NNi +=  *  * * 

Figure 5.2   Structure of the two dimensional Fourier coefficients of a real function. Real coefficients are indicated in 
blue, complex coefficients in red. The row numbers are given at the left. The column numbering  is analogous. The stars 

indicate coefficients that are not independent. 

The coefficients of the first row have 0=p  and therefore 

 ,)(),(),0(ˆˆ 22
,1

yiq
x

yiq
jj

jj eyFdyeyxfdxdyqff ππ∫∫ ∫===  (5.9) 

with 

 ∫= .),()( yxfdxyFx  (5.10) 

Now xF  is a real function, because f  is real. Equation (5.9) defines the coefficients of the first row as the 
FFT coefficients of a real function. The coefficients in the first row therefore satisfy the symmetry relations 
of the one dimensional case. The coefficients with indices )1,1(  and )1,1( 22

1 +N  are real, while the others 
are complex and each others complex conjugate, symmetric around the coefficient with index )1,1( 22

1 +N  
as indicated by the white star in figure 5.2. The same argument holds with x  and y  interchanged, and 
therefore the coefficients of the first column are those of a real function. 

The coefficients of row 112
1

1 += Nk  satisfy 

 [ ] ,),(),(ˆ),(ˆˆ )(2)(2
maxmax,

maxmax

1 ∫∫ +−+ +=−+= yqxpiyqxpi
jjjk

jj eeyxfdxdyqpfqpff ππ  (5.11) 

with pNp ∆= ˆ
12

1
max . This can be written as 

 ,),()cos(2ˆ
max

2
,1

yxfxpdxedyf yiq
jk

j∫ ∫= π  (5.12) 

which again is the Fourier transform of a real function. The FFT coefficients in row 112
1 +N  therefore 

satisfy the same symmetry relations as those in row 1. The same argument holds with x  and y  
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interchanged, so the FFT coefficients in column 122
1 +N  satisfy the same symmetry relations as those in 

row 1. 

The other coefficients are all complex and form complex conjugate pairs. The pairs lie point symmetric 
around the point with indices )1,1(),( 22

1
12

1
21 ++= NNkk  due to (5.5). All coefficients in an area marked 

with a white star in figure 5.2 are the complex conjugate of another one in a non-marked are. In total there 
are exactly 21NN  independent numbers, as can easily be inferred from figure 5.2. 

A final point concerns the coefficient with indices (1,1). This coefficients corresponds to zero frequency, and 
is just the average of the function in the frequency domain. For the normalized potential increment fields in 
the frequency domain in 2DVAR it represents energy fed into or drained from the wind field. Since 2DVAR 
is not allowed to change the energy from the system, this coefficient should be zero. Note that such a change 
in energy transforms to an average wind in the spatial domain. Putting the coefficient with indices (1,1) in 
the frequency domain equal to zero is equivalent to the requirement that 2DVAR should be free of bias – a 
common and reasonable demand. 

With this information, the packing and unpacking algorithms can be constructed as indicated in figures 5.3 
and 5.4, respectively. The dimension of the control vector equals )1(2 21 −NN . Note that the role of real and 
imaginary components is opposite of that in the “normal” situation, because the  transformation coefficients 
are purely imaginary. 

Basically, the algorithm contains loops over index 1i  running from 1 to the total number of grid points in the 
first dimension, 1N , and index 2i  running from 1 to half the number of grid points plus one in the second 
dimension, 122

1
2 += Nk . The loops are done twice, once for the velocity potential and once for the stream 

function. 

Effect on the background cost function 

The basic form of the background cost function is given by (3.19) as 

 ∫ ∫
∞

∞−

∞

∞−
+= .)],(ˆ[)],(ˆ[ 2)(2)( qpqpdpdqJ nn

b χψ  (5.13) 

Approximating the integral by a first-order summation (just like the integrals for the Fourier transformations 
in the FFT algorithm), this yields 

 ,)],(ˆ[)],(ˆ[ 2
21

)(

1 1

2
21

)(1

1

2

2

iiiiJ n
N

i

N

i

n
qpb χψ∑ ∑

= =
+∆∆=  (5.14) 

with the summations running over the 2DVAR batch grid in the frequency domain. 
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Figure 5.3   Packing algorithm in the frequency domain. 

Now we can apply the symmetry relations of the previous sections to the Fourier coefficients )(ˆ nψ  and )(ˆ nχ . 
The contribution of a conjugate pair equals 

 ,)],(ˆ[2)],(ˆIm[2)],(ˆ[Re2)],(ˆ[)],(ˆ[ 2
21

)(2
21

)(2
21

)(2
21

)(2
21

)( iiiiiijjii nnnnn ψψψψψ =+=+  (5.15) 

with 111 2 iNj −+=  and 222 2 iNj −+= . This explains the origin of the factor λw  in (3.18). If all 
independent components of )(ˆ nψ  and )(ˆ nχ  are written as components of the control vector ξ  according to 
the packing algorithm in figure 5.3, the background cost function reads 

 .2∑∆∆=
λ

λλξwJ qpb  (5.16) 

 
 

0=λ  
112

1
1 += Nk  122

1
2 += Nk  

11 =i  
    12 =i   No action  
    22

1
2 ,2 Ni =  ),1(ˆIm 2

)(
1 inψξλ =+  ;  ),1(Re 2

)(
2 inψξλ =+  2+= λλ  

    22 ki =    ),1(ˆIm 2
)(

1 knψξλ =+  ;   1+= λλ  

12
1

1 ,2 Ni =   
    111 2 iNj −+=  
    12 =i        )1,(ˆIm 1

)(
1 inψξλ =+  ;  )1,(Re 1

)(
2 inψξλ =+  2+= λλ  

    22
1

2 ,2 Ni =  ),(ˆIm 21
)(

1 iinψξλ =+  ;  ),(Re 21
)(

2 iinψξλ =+  2+= λλ  
   ),(ˆIm 21

)(
1 ijnψξλ =+  ;  ),(Re 21

)(
2 ijnψξλ =+  2+= λλ  

    22 ki =    ),(ˆIm 21
)(

1 kinψξλ =+  ;  ),(ˆRe 21
)(

1 kinψξλ =+  2+= λλ  

11 ki =  
    12 =i   )1,(ˆIm 1

)(
1 knψξλ =+  ;   1+= λλ  

    22
1

2 ,2 Ni =  ),(ˆIm 21
)(

1 iknψξλ =+  ;  ),(Re 21
)(

2 iknψξλ =+  2+= λλ  
    22 ki =    ),(ˆIm 21

)(
1 kknψξλ =+  ;   1+= λλ  

 
 Repeat with )(ˆ nψ  replaced by )(ˆ nχ  
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Figure 5.4   Unpacking algorithm in the frequency domain. 

The weights λw  are equal to 2 if the corresponding element of )(ˆ nψ  or )(ˆ nχ  belongs to a conjugate pair, and 
it equals 1 if that is not the case. This happens only for indices ),1( 2k , )1,( 1k , and ),( 21 kk  as can be inferred 
from figure 5.4. The components with index (1,1) do not contribute. 

 

0=λ  
112

1
1 += Nk  122

1
2 += Nk  

111 2 iNj −+=  222 2 iNj −+=  

 

11 =i  
    12 =i    )0,0()1,1(ˆ )( =nψ  
    22

1
2 ,2 Ni =  2+= λλ  ),(),1( 12

)(
−= λλ ξξψ in ; ),1(ˆ),1(ˆ 2

*)(
2

)( ij nn ψψ =  
    22 ki =    1+= λλ  ),0(),1(ˆ 2

)(
λξψ =kn  

12
1

1 ,2 Ni =   
    12 =i   2+= λλ  ),()1,( 11

)(
−= λλ ξξψ in ; )1,(ˆ)1,(ˆ 1

*)(
1

)( ij nn ψψ =  
    22

1
2 ,2 Ni =  2+= λλ  ),(),( 121

)(
−= λλ ξξψ iin ; ),(ˆ),(ˆ 21

*)(
21

)( iijj nn ψψ =  
   2+= λλ  ),(),( 121

)(
−= λλ ξξψ ijn ; ),(ˆ),(ˆ 21

*)(
21

)( ijji nn ψψ =  
    22 ki =    2+= λλ  ),(),( 121

)(
−= λλ ξξψ kin ; ),(ˆ),(ˆ 21

*)(
21

)( kikj nn ψψ =  

11 ki =  
    12 =i   1+= λλ  ),0()1,(ˆ 1

)(
λξψ =kn  

    22
1

2 ,2 Ni =  2+= λλ  ),(ˆ 1
)(

−= λλ ξξψ n ; ),1(ˆ),1(ˆ 2
*)(

2
)( ij nn ψψ =  

    22 ki =    1+= λλ  ),0(),(ˆ 21
)(

λξψ =kkn  
 
Repeat with )(ˆ nψ  replaced by )(ˆ nχ . 
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6 Error covariance model 
Spatial domain 

The error covariance model in the spatial domain is modeled following Daley [1991]. The Gaussian model 
for the error covariances of the velocity potential and stream function in the spatial domain is defined as 

 ,)1()(
2222 /22/ ψψ

ψψψ ν Rr
l

Rr eLVeVrf −− −==  (6.1a) 

 ,)(
2222 /22/ χχ

χχχ ν Rr
t

Rr eLVeVrf −− ==  (6.1b) 

where ψV  and χV  stand for the variance of the error in ψ  and χ , respectively, and lV  and tV  for the 
variance of the error in the background wind components l  and t , respectively. Further, 2ν  stands for the 
ratio of the rotational and the divergent contribution to the wind field. The length scales ψR  and 

χR determine the extent of the error correlations, and the scaling parameters ψL  and χL  are defined as 

 .
)(

)(
,

)(
)(

0
2

2

0
2

2

==
∇

−=
∇

−=
rr

rf
rf

L
rf

rf
L

χ

χ
χ

ψ

ψ
ψ  (6.2) 

Equation (6.2) holds for any form of the error correlation function. Note that Daley [1991] adds an additional 
factor of 2 in the right hand side of (6.2), but that is incorrect. For the Gaussian form (6.1) one readily finds 

 ., 2
2
122

2
12

χχψψ RLRL ==  (6.3) 

The error covariance model presented above holds for isotropic errors in ψ  and χ . The errors in the 
different domains are related as [Daley, 1991, section 5.2] 

 ., 22
χ

χ

ψ

ψ

L
V

V
L
V

V tl ==   (6.4) 

These relations are derived at the end of this chapter, since they are not explicitly given by Daley. 

Frequency domain 

Fourier transformation yields the error covariance model in the frequency domain. The Gaussian model will 
also be Gaussian in the frequency domain, see appendix G. Using equation (G.4) the error covariance in the 
frequency domain reads (see also 3.12) 

 ,)1(),(),(ˆ )(222
ˆˆ

2222 qpReRLVqpBqpf +−−== ψπ
ψψψψψψ πν  (6.5a) 
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 .),(),(ˆ )(222
ˆˆ

2222 qpReRLVqpBqpf +−== χπ
χχχχχχ πν  (6.5b) 

For the conditioning transformation we need the matrix elements of 2/1
ˆˆψψB  and  2/1

ˆˆχχB , which are the square 
root of (6.5). Using (6.3) one obtains 

 ,)1(
2

),( )(222/1
ˆˆ

2222
2
1 qpReRqpB +−−= ψπ

ψψψψ ενπ
 (6.6a) 

 ,
2

),( )(22/1
ˆˆ

2222
2
1 qpReRqpB +−= χπ

χχχχ νεπ
 (6.6b) 

with ψψε V=  and χχε V= . 

Relation between errors in the wind domain and the potential domain 

Daley [1991, section 5.2] defines the error covariances in the wind domain and in the potential domain as 

 ,)()(,)()( 22 rErCrErC tttttlllll rr ==   (6.7a) 

 ,)()(,)()( 22 rErCrErC χχχχχψψψψψ rr ==   (6.7b) 

where 2E  stands for the error variance and r  for the error correlation. Comparison with the previous 
sections shows the correspondence fC ↔  and VE ↔2 . Since 1)0( =r  it follows that 2)0( EC =  for 
each component. Daley also shows that in the isotropic case 

 ,)()(1)( 2

2

rC
dr
drC

dr
d

r
rCll χχψψ −−=   (6.8a) 

 .)()(1)( 2

2

rC
dr
drC

dr
d

r
rCtt ψψχγ −−=   (6.8b) 

Setting 0=r  lets the first derivatives vanish, since the covariances are symmetric functions of their 
argument. The second derivatives evaluated at 0=r  can be written using (6.2) as 

 ,)0()()( 2

0

2

0
2

2

ψψψψψψψ CLrCrC
dr
d

r
r

−=∇=
=

=

  (6.9a) 

 .)0()()( 2

0

2

0
2

2

χχχχχχχ CLrCrC
dr
d

r
r

−=∇=
=

=

  (6.9b) 

Substituting this in (6.8) and letting 2)0( EC =  immediately yields (6.4).
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7   Single observation test 

Single observation solution 

In case there is exactly one observation, the 2DVAR problem can be solved analytically. Suppose that at 
some point ),( ji yx  on the 2DVAR grid there is one observation ),( oo vu  with increment ),( oo vu δδ . 
Starting with zero background increment and zero analysis increment field, the only contribution to the cost 
function and its gradient originates from this observation. From (4.9) and (4.10) this contribution reads 

 ,2

22

2

22

O

oo

O

oo
o

vuvu
J

εε
δδ +

=
+

=  (7.1a) 

 .
22

,
22

2222
O

o

O

o

ij

o

O

o

O

o

ij

o vv
v
Juu

u
J

εε
δ

εε
δ

==
∂
∂

==
∂
∂

 (7.1b) 

with vuO εεε == . Now the 2DVAR problem reduces to an optimal interpolation problem [Daley, 1991] 
with solution 

 ,
)(

initial
222

22
fina

t
OB

OBl
t JJ

εε
εε
+

=  (7.2) 

where bot JJJ +=  is the total cost function. At the solution point, the gradient of the total cost function 
should be zero, since the total cost function is minimal there. Therefore 

 .ob JJ −∇=∇  (7.3) 

With these relations it is possible to calculate the final analysis field as shown schematically in figure 7.1. 
Starting with values for ),( oo vu  and  for Oε  and Bε , the final cost function value is obtained from (7.2). 
The gradient of the observation part of the cost function is obtained from (7.1b). This yields the gradient of 
the background part of the cost function according to (7.3). Since the background cost function can be 
defined as ξξ T

bJ = , its gradient reads 

 .2ξ=∇ bJ  (7.4) 

From (7.4) the background potential field can be retrieved. See appendix E for a more elaborate derivation. 
The increment of the analysis wind  equals the analysis wind itself, since the background is assumed to be 
zero, so at the observation point it satisfies 

 .),(),( 22

2

oo
OB

B vuvu
εε

ε
+

=  (7.5) 
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),( oo vu   →JoScat  oo JJ ∇,   → adjoint
nUnconditio

 )ˆ,ˆ( )()( n
o

n
o ψχ ∇∇  

    ↓ 0=∇+∇ bo JJ ↓ 
 

    )ˆ,ˆ( )()( n
b

n
b ψχ ∇∇  

    ↓
bb

bb

ψψ

χχ

∇=

∇=

2
1
2
1

↓ 

  bξ   ←Pack  )ˆ,ˆ( )()( n
b

n
b ψχ  

  ↓↓ Jb   ↓  Uncondition ↓  

  bb JJ ∇,   ),( bb vu  

Figure 7.1   Scheme for calculating the solution in the single observation test. The green boxes indicate quantities that 
can be compared with the input values. 

Applying the unconditioning transformation to the background potential field yields the analysis wind field 
that should have the prescribed rotational and/or divergent structure determined by the value of ν  set in the 
error covariance model. Since the wind speed at point ),( ji yx  should satisfy (7.5), its value can be used to 
check the unconditioning transformation. A second check consists of packing the potential fields into a 
control vector and calculating the final background contribution to the total cost, which should satisfy (7.2), 
and that to the total gradient, which should satisfy (7.3). 

This test is implemented in program SOSC (Single Observation Solution Check). The required solution is 
retrieved within machine precision (about six decimal places). 

Single Observation Analysis 

The next step in testing the cost function and its gradient is to start with zero background and let 2DVAR’s 
minimization routine find the solution. This is done in program SOAP (Single Observation Analysis Plot). 

Figure 7.2 shows the resulting wind fields for ),( oo vu  equal to (1,0) or (0,1) m/s and ν  equal to zero 
(purely rotational) or one (purely divergent). The observation is located in the centre of the grid, x  and y  
equal to 1600 km .The range parameters ψR  and χR  are both equal to 300 km. The error variance in the 
observations and in the background field was set equal to 3.24 m2/s2 for both. The wind speed at x  and y  
equal to 1600 km should equal half of the initial observation. This is satisfied with an accuracy better than 

5102 −⋅ . The minimization in 2DVAR is performed by routine LBFGS [Liu and Nocedal, 1989]. The 
accuracy with which the solution is retrieved can be controlled with the parameter ε  defined as 
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 (7.7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2   Results of the single observation test for various observations and values of the rotational/divergence ratio. 
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Iteration tJ  
t

t

J
J∇

 cv  

1 0.308642   
2 0.30864152   
3 0.30863965   
4 0.30863214   
5 0.30860204   
6 0.3084817   
7 0.30800086   
8 0.30608514   
9 0.2985448   
10 0.2703461 4.65 10-12 0.06656095 
11 0.15591854 3.98 10-14 0.49277255 
12 0.15513143 2.82 10-14 0.49654663 
13 0.15432084 2.34 10-19 0.5000003 

Table 7.1   Convergence of 2DVAR’s minimalization in SOAP. The quantity cv  is the meridional wind speed at x = y 
= 1600 km and should equal 0.5 m/s. 

 

Table 7.1 shows in detail the convergence of SOAP for )1,0(),( =oo vu m/s, 0=ν  (purely rotational), and 
300== χψ RR km. The cost function does not converge with uniform speed. Convergence starts slowly 

but surely, with a rate of about one decimal place per iteration. The final solution is almost reached at the 11-
th iteration. The last two iterations further improve the minimum. 

Routine LBFGS stops when the calculated ratio of the norm of the cost gradient and the cost is smaller than 
ε . Table 7.1 shows that ε  should be smaller than 4.65 10-12 , otherwise LBFGS would stop at iteration 
number 10 or earlier, before it has converged to a decent velocity field ( cv  is much too small at iteration 10). 
On the other hand, ε  should be larger than 2.34 10-19 , because otherwise LBFGS would be forced to search 
a minimum beyond machine precision. Therefore ε  should be somewhere between 10-16 and 10-18. 

Positional properties 

Figure 7.3 shows what happens with the single observation analysis when the observation is not in the centre 
of the 2DVAR grid (left panel), but at the edge (right panel). This figure was obtained with )1,0(),( =oo vu  
m/s, 0=ν , and 600== χψ RR  km in order to extend the spatial range of the covariance structures. Figure 
7.2 shows that the analysis is periodic. In order to prevent mixing of observations at the grid edges, the 
2DVAR grid should be extended such that the periodicity of the analysis has no influence on the final 
2DVAR results. The size of such an extension depends on the spatial scale of the background error 
correlation lengths ψR  and χR . It should be several times the correlation length. 
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Figure 7.2   Effect of the observation position on the analysis. 
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8 Some implementation notes 
Evaluation of the cost function and its gradient 

The background contribution to the cost function reads 

 ,2
)1(2

1

22

0

21
∑∫∫

−

=

∞∞

∞−
∆∆≈=

NN
b wqpdqdpJ

λ
λλξξ  (8.1) 

where the integral has been approximated by the sum over the gridded potential fields normalized with the 
integration weight 12

21 )( −∆=∆∆ NNqp , ∆  being the 2DVAR grid size in position space.  

The following points must be noted: 

 It is not necessary to use a higher order approximation for the integral like Simpson’s rule, because the 
Fourier transforms are evaluated at the same order. 

 Since the observation part of the cost function is evaluated in position space, the integration weight in 
(8.1) must be included. Otherwise the two components of the cost function differ in normalization and 
can not be added to yield the total cost. 

 The control vector weights in (8.1) reflect the fact that the potential fields are Hermitian. They should be 
applied not only to bJ , but also to its gradient bJ∇  and to the gradient of the observation cost, oJ∇ . 
This is because the potential fields due to the observations are also Hermitian. 

 The present implementation of 2DVAR uses complex matrices of dimension 21 NN ×  in the frequency 
domain and a complex-to-complex FFT routine. Since the potential fields are Hermitian, it is not 
necessary to calculate the  transformation and the convolution (or their adjoints) for all indices 

11 ,,1 Ni ⋅⋅⋅=  and 22 ,,1 Ni ⋅⋅⋅= . It would be sufficient to take only the independent components into 
account. A simple method with slight overhead would be to limit the index 2i  to non-negative 
frequencies only, 22 ,,1 ki ⋅⋅⋅=  with 122

1
2 += Nk . Such an adaptation in combination with a real-to-real 

FFT routine would increase the computational efficiency of 2DVAR – at the cost of more complicated 
code. Since 2DVAR in its present form is fast enough to meet all operational requirements so far, this 
adaptation has low priority. 

The backward FFT in genscat support is defined as (see appendix A) 

 ∑ ∑
−

=

−

=









+−

=
1

0

1

0
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,
21

,
1 2

21 ,ˆ1 N

m

N

n

N
ln

N
kmi

nmlk eu
NN

u
π

 (8.2) 

i.e., including a normalization factor 1
21 )( −NN  and therefore assuming unity grid size. The adjoint of (8.2) 

is simply the forward FFT and should contain the proper normalization factor 2∆ , with ∆  the 2DVAR grid 
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size. Because the factor 1
21 )( −NN  is included in the lowest level FFT routine, the adjoint inverse FFT 

routine in genscat still contains the normalization factor 1
21 )( −NN  if it is defined as the complex conjugate 

of the inverse FFT. 

 In order to avoid confusion regarding the normalizations in the forward and inverse FFT routines, it is 
better to use a forward FFT routine rather than an adjoint inverse routine in 2DVAR. 

Initial minimalisation step size 

The minimalization is performed by routine LBFGS [Liu and Nocedal, 1989]. The size of the first step is 
estimated in the original routine as )0(/1 g , where )0(g  is the gradient at the initial point 0=ξ . This step 
size may be much too small for 2DVAR, causing the minimalization procedure to get stuck at the first point. 
It is shown in appendix H that for the 2DVAR problem a better first step size is given by )0(/)0( gf , with 

)0(f  the value of the cost function at the initial point. 

In practice, a first step size of )0(/)0(30 gf  leads to some improvement, because on average less function 
evaluations are needed to find the minimum. 
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9   Resume 
 

The relevant formulas for 2DVAR are collected in this paragraph. The analysis wind field is found by 
minimizing a cost function )(ξJ  expressed in terms of the so-called preconditioned control vector ξ  which 
is expressed in terms of the normalized potential fields in the frequency domain. If xδ  stands for the control 
vector in terms of the analysis increments in the spatial domain, it is related to ξ  by the unconditioning 
transformation 

 .Uξx =δ  (9.1) 

The cost function is given by 

 ,ob JJJ +=  (9.2) 

with the background term bJ  expressed in terms of the normalized potential fields in the frequency domain 
as 

 ∑
−

=

=
)1(2

1

21

,
NN

T
b wJ

λ
λλλ ξξ  (9.3) 

where the index λ  runs over all independent potential field components, and the weights w  are determined 
by the fact that the potential fields are Hermitian on one hand, and the properties of the FFT algorithm on the 
other. The observation term oJ  in terms of the analysis increments in the spatial domain reads 

 ∑ −=
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so JJ ,/1  (9.4a) 
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 (9.4b) 

where the index m  runs over all observations and mK  is the number of ambiguities of observation m . 
Further, in (9.4) we have 4=p  and 8.1== lt εε m/s. Note that t  stands for the transversal wind 
component in the 2DVAR batch grid and l  for the longitudinal one. 

The contribution of the background term to componentλ  of the cost function gradient reads  

 .2 λλλ
ξwJ b =∇  (9.5) 

The derivatives of the observation part of the cost function in the positional domain read 
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 (9.7) 

As stated before, the spatial domain and the frequency domain are connected by the unconditioning 
transformation (9.1). The gradient of the observation part of the cost function in the frequency domain is 
given by 

 ,*
oxo JJ ∇=∇ Uξ  (9.8) 

where *U  is the adjoint of U (i.e., the complex conjugate of its transpose) and the gradient vector ox J∇  
has the derivatives (9.6) as its components, the subscripts of the gradient operators indicating the domain. 

The unconditioning transformation consists of three parts, 

 ,F/
ˆ,ˆ

121 −= HBU ψχ  (9.9) 

with  1−F  the inverse Fourier transform, H  the Helmholz transformation operator, and 21 /
ˆ,ˆ ψχB  the square 

root of the factorized background error covariance matrix expressed in terms of stream function and wind 
potential in wavenumber space. 

The discrete inverse Fourier transform reads 
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 (9.10) 

where ∆  is the size of the spatial grid that has dimensions 21 NN × . 

The Helmholz transformation is given by 
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with 
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The normalization reads 
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The error correlation function in the spatial domain are defined as a function of 22 yxr +=  as 
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where ψV  and χV  stand for the variance of the error in ψ  and χ , respectively, and 2ν  for the ratio of the 
rotational and the divergent contribution to the wind field. The length scales ψR  and χR determine the 
extent of the error correlations, and the scaling parameters ψL  and χL  are defined as 
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For Gaussian error covariances the normalizations can be calculated analytically. 
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10 Flow dependent background errors 
 

In the preceding chapters it was assumed that the background error covariance matrix B (or, more precisely, 
its inverse) was a function of the distance between two points only, and that the background error variances 
were constant within a batch. It will now first be shown that this considerably simplifies evaluation of the 
background cost function when transformed to wavenumber space. If the background errors are flow 
dependent, they are no longer constant but depend on position. It will be shown that this can easily be 
incorporated in the current 2DVAR scheme. 

General case 

In position space, the background cost function can be written in continuous representation as (c.f. equation  
(2.10)) 

 ,)()()( 1 xxxBxxx ′′′= −∫∫ δδ ,ddJ *
b  (10.1) 

where )( y,x=x , )( y,x ′′=′x , and δ stands for uδ  or vδ . This is the usual expression for a scalar 
product in Hilbert space. The star indicating complex conjugation could be omitted in (10.1) since δ  is a 
real vector. However, it is useful to keep it as a reminder for the case δ  is Fourier transformed. 
Transforming to wavenumber space, the cost function reads 

 .ˆed,ˆeeddˆedddJ iii*i
b )()()( 21222 ppqqBqqppxx xpxqxqxp ′′′′′= ′⋅′−−′⋅′−⋅−⋅ ∫∫∫∫∫∫ δδ ππππ  (10.2) 

Rearranging terms yields 

 .ededˆ,ˆˆddddJ ii*
b

xqpxpq xxpqqBppqqp ′⋅′+′−⋅−−− ∫∫∫∫∫∫ ′′′′′= )(2)(21 )()()( ππδδ  (10.3) 

The integrals over position yield delta functions, so 

 .ˆ,ˆˆddJ *
b )()()( 1 pppBppp ′−′−′= −∫∫ δδ  (10.4) 

Since B  and δ  are real functions in position space, their Fourier transforms are symmetric in their 
arguments, and therefore 

 .ˆ,ˆˆddJ *
b )()()( 1 pppBppp ′′′= −∫∫ δδ  (10.5) 

Now the evaluation of bJ  in wavenumber space requires as many integrations as in position space, so 
transformation to wavenumber space yields no gain in efficiency for evaluating bJ . 
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Constant background errors 

In the preceding chapter it was assumed that the background error variances were constant (at least within a 
batch), and that the background error correlation was a function of distance. This can be expressed as 

)(11 xxBB ′−= −− , so 

 ,)()()( 1 xxxBxxx ′′−′= −∫∫ δδ *
b ddJ  (10.6) 

Taking Fourier transforms, one arrives at 

 .ˆedˆedˆedddJ ii*i
b )()()( 21)(22 ppqBqppxx xpxxqxp ′′′= ′⋅′−−′−⋅−⋅ ∫∫∫∫∫ δδ πππ  (10.7) 

Rearranging terms yields 

 .ededˆˆˆdddJ ii*
b

xpqxqp xxpqBppqp ′⋅′−−⋅−−− ∫∫∫∫∫ ′′′= )(2)(21 )()()( ππδδ  (10.8) 

The integrals over x  and x′  give delta functions )( qp −δ  and )( pq ′−δ , respectively, so 

 .ˆˆˆdJ *
b )()()( 1 ppBpp δδ −∫=  (10.9) 

Note that evaluation of bJ  in wavenumber space now requires a single two-dimensional integration, whereas 
its evaluation in position space according to (10.6) requires a double two-dimensional integral. Therefore bJ  
is calculated much more efficient in wavenumber space than in position space if the background error 
variances are constant and the background error correlations are a function of distance only. In fact, the 
number of integrations could be reduced even further when going to polar coordinates, since actually 

)(11 xxBB ′−= −− . This, however, would lead to some implementational problems since the FFT 
algorithm used for the Fourier transforms is restricted to Cartesian coordinates. 

Flow dependent background errors 

The case of flow dependent background errors (background errors that vary with position) while the 
background error correlation is a function of distance (so the shape of the background error covariance is 
constant) is in fact quite simple. The background covariance matrix can be factored as 

)()()()( xΣxxΓxΣxxB ′′−=′, , see (3.13). Since B  is symmetric in its arguments, one can write 

 .)()()()()( 11111 xΣxxΓxΣxxBxxB ′′−=′=′ −−−−− ,,  (10.10) 

Substituting this in (10.1) yields 

 .ddJ *
b )()()()()( 111 xxΣxxΓxΣxxx ′′′−′= −−−∫∫ δδ  (10.11) 
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Putting )()()( 1 xxΣx δ−=∆ , so ( ) )()()()()( 11 xΣxxxΣx −− ==∆ *** δδ  since Σ  is real, and substituting 
in (10.11) results in 

 .ddJ *
b )()()( 1 xxxΓxxx ′∆′−∆′= −∫∫  (10.12) 

This is the same as (10.6) with ∆→δ  and ΓΒ→ . Repeating the Fourier transformations (10.7) and 
(10.8) immediately yields the final result 

 .ˆˆˆdJ *
b )()()( 1 ppΓpp ∆∆= −∫  (10.13) 

This shows that implementation of position dependent background errors in 2DVAR is very simple: the 
background covariance matrix must be replaced by the background error correlation matrix, and the velocity 
increments must be multiplied by the standard deviation of the background error. 

Flow dependent background errors may be obtained from the ECMWF Ensemble Data Assimilation system 
[Bonavita et al., 2012] or from the scatterometer data itself using MLE and singulatity exponents [Lin et al., 
2016]. 
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Appendix A   Fourier transformation 
Continuous case 

Suppose the two-dimensional surface wind field v  in the spatial domain is a continuous function of the 
horizontal coordinates x  and y , ( )),(),,( yxvyxu=v . Define the Fourier transforms û  and v̂  according to 
[Press et al., 1988] 

 ∫∫ +== ,),(),]([),(ˆ )(2 qypxieyxudxdyqpuFqpu π  (A.1a) 

 ∫∫ +== ,),(),]([),(ˆ )(2 qypxieyxvdxdyqpvFqpv π  (A.1b) 

with p and q spatial frequencies, and the integration extending over the whole real axis. The hats indicate 
functions that are defined in the frequency domain; the square brackets indicate the argument of an operator. 
Note that p and q are spatial frequencies and not spatial wave numbers, because of the definition of the 
exponential in the Fourier transform. The inverse transform reads 

 ∫∫ +−− == ,),(ˆ),](ˆ[),( )(21 qypxieqpudpdqyxuFyxu π  (A.2a) 

 ∫∫ +−− == .),(ˆ),](ˆ[),( )(21 qypxieqpvdpdqyxvFyxv π  (A.2b) 

This can be easily shown by substituting (A.1a) in (A.2a) and (A.1b) in (A.2b) and using 

 ∫ ′−=′− ,)()(2 xxedp xxip δπ   (A.3) 

the function on the right hand side of (A.3) being the Dirac delta function. Note that no normalization 
constant is involved, because it is included as the factor π2 in the exponentials. 

Discrete case 

The discrete 2D Fourier transform on a position grid with grid size ∆ reads (see, e.g., Press et al, [1988]) 

 ∑ ∑
−

=

−

=







 +

∆=
1

0

1

0

2

,
2

, ,ˆ
M

k

N

l

N
ln

M
kmi

lknm euu
π

 (A.4) 

where ),(, lklk yxuu =  with  ∆= kxk  and ∆= lyl , k  running from 0 to 1−N  and l  from 0 to 1−M . The 
summation in the right hand side of (A4) is performed by a FFT algorithm. The normalization factor 2∆  has 
to be added explicitly in the 2DVAR software. 

The inverse discrete 2D Fourier transform reads 
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 ∑ ∑
−

=

−

=







 +−

∆
=

1

0

1

0

2

,2, ,ˆ1 M

m

N

n

N
ln

M
kmi

nmlk eu
NM

u
π

 (A.5) 

which is shown easily to hold by substitution of (A.4) in (A.5) or vice versa. As with the forward transform, 
the normalization factor in front of the summation is not set by the FFT algorithm, so it has to be included 
explicitly in the 2DVAR code. 

Note that the normalization factor of the forward discrete transform equals the product of the grid sizes in the 
spatial domain, yx∆∆=∆2 , while the normalization factor of the inverse discrete transform equals the 
product of the grid sizes in the frequency domain, qpMN ∆∆=∆∆ −− 11 )()( . With these definitions, the 
summations are easily recognized as the corresponding integrals evaluated with the simple first-order 
formula (left Riemann sum) 

 ∫ ∑
−

=

∆≈
b

a

N

n
nxfxfdx ,)()(

1

0
 (A.6) 

with ax =0 , bxN = , and 

 .
N

ab −
=∆  (A.7) 
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Appendix B   Helmholtz transformation 
Continuous boundary conditions 

The  operator ),( 21 HH=H  is in the spatial domain defined as 

 ,),(),(),](,[),( 1 y
yx

x
yxyxHyxu

∂
∂

−
∂

∂
==

ψχψχ  (B.1a) 

 ,),(),(),](,[),( 2 x
yx

y
yxyxHyxv

∂
∂

+
∂

∂
==

ψχψχ  (B.1b) 

with χ  the velocity potential and ψ  the stream function. The inverse  operator ),( 1
2

1
1

1 −−− = HHH  satisfies 

 ,),](,[),( 1
1 yxvuHyx −=χ  (B.2a) 

 .),](,[),( 1
2 yxvuHyx −=ψ  (B.2b) 

The explicit form of the  operator and its inverse is more easily evaluated in the frequency domain., 
especially for numerical applications. 

From (B.2a) and (A.2a) it follows that 

 

∫∫∫∫ +−+−
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−
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=

=
∂

∂
−
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=

===

.),(ˆ),(ˆ

),](ˆ[),](ˆ[

),]](ˆ[],ˆ[[),](,[),(
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ππ ψχ

ψχ

ψχψχ

  

Note that the arguments of the functions in the frequency domain have been omitted at some places to keep 
the equations readable. The order of differentiation and integration may be interchanged for well behaving 
functions, so 
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 (B.3) 
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From the previous equations one finds in the spatial domain, dropping the arguments of all functions 

 .]ˆˆ[]ˆˆ[]]ˆ[],ˆ[[ 2
1

1
111

1 ψχψχ hFhFFFH −−−− −=  (B.4) 

In the same way one obtains 

 

.),](ˆˆ[),](ˆˆ[

),(ˆ),(ˆ),(ˆ)),(ˆ

),(ˆ)2(),(ˆ)2(

),(ˆ),(ˆ

),](ˆ[),](ˆ[

),]](ˆ[],ˆ[[),](,[),(

1
1

2
1

)(2
1

)(2
2

)(2)(2

)(2)(2

11

11
22

yxhFyxhF

eqpqphdpdqeqpqphdpdq

eqpipdpdqeqpiqdpdq

eqpdpdq
x

eqpdpdq
y

x
yxF

y
yxF

yxFFHyxHyxv

qypxiqypxi

qypxiqypxi

qypxiqypxi

ψχ

ψχ

ψπχπ

ψχ

ψχ

ψχψχ

ππ

ππ

ππ

−−

+−+−

+−+−

+−+−

−−

−−

+=

=+=

=−+−=

=
∂
∂

+
∂
∂

=

=
∂

∂
+

∂
∂

=

===

∫∫∫∫
∫∫∫∫

∫∫∫∫  

So, again dropping the arguments of the functions 

 .]ˆˆ[]ˆˆ[]]ˆ[],ˆ[[ 1
1

2
111

2 ψχψχ hFhFFFH −−−− +=  (B.5) 

In what follows the function arguments are dropped when possible. For functions in the spatial domain the 
arguments are assumed to be ),( yx , and for functions in the frequency domain ),( qp , unless explicitly 
stated otherwise. 

Using the fact that the inverse Fourier operator is linear, (B.4) can be cast into the form 

 .]ˆˆˆˆ[ 21
1 ψχ hhFu −= −  

Applying a Fourier transformation to both sides yields in the frequency domain 

 .ˆˆˆˆˆ 21 ψχ hhu −=  (B.6a) 

Along the same lines one obtains 

 .ˆˆˆˆˆ 12 ψχ hhv +=  (B.6b) 

Equation (B.6) shows that the Helmholtz operator is a simple linear transformation in the frequency domain. 
Its inverse is easily found by solving (B.6) for χ̂  and ψ̂ . This yields 

 ,ˆˆˆˆˆ 1
2

1
1 vhuh −− +=χ  (B.7a) 

 ,ˆˆˆˆˆ 1
1

1
2 vhuh −− +−=ψ  (B.7b) 

with 
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 ,
2

),(ˆ
22

1
1 qp

piqph
+

=−

π
 (B.8a) 

 .
2

),(ˆ
22

1
2 qp

qiqph
+

=−

π
 (B.8b) 

These equations are easily discretized for application on the 2DVAR grid. 

Periodic boundary conditions 

De Vries et al. derive the Helmholtz transformation equations on a discrete grid, since in 2DVAR the wind 
speed components and the potentials are evaluated on discrete grids. Their derivation is repeated below, and 
their results differ from those obtained in the preceding paragraph. This is because they implicitly assume 
periodic boundary conditions: the equations are discretized and evaluated on a finite grid, whereas in the 
previous paragraph the equations were evaluated in infinite space and discretized afterwards. 

The forward Helmholtz transformation in the formulation of De Vries et al. reads  

 ,
,,

,
lklk

lk yx
u

∂
∂

−
∂
∂

=
ψχ

 (B.9a) 

 ,
,,

,
lklk

lk xy
v

∂
∂

+
∂
∂

=
ψχ

 (B.9b) 

with the subscripts lk,  indicating that the quantity is to be evaluated at the grid point with indices lk, . On a 
discrete grid, the derivatives of a function f with respect to x  and y  reads [Abramowitz and Stegun, 1970, 
25.3.21] 

 ,
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fff

x
f

 (B.10) 

where ∆  is the grid size which is assumed the same in both directions. Substitution of (B.10) in (B.9a) and 
replacing all quantities by their discrete inverse Fourier transforms yields 
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The normalization factors of the discrete inverse Fourier transform cancel. The exponentials at the right hand 
side of (B.11) can be expanded to yield 
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This can be simplified to 
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This should hold for all  m  and n , so the summations and the common phase factor can be dropped. This 
results in 

 ,,,, ˆˆˆ nmnnmmnmu ψνχm −=  (B.14) 

with 
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In the same way, (B.9b) and (B.10) yield 

 

.ˆ1ˆ1
2
1

ˆ1ˆ1
2
1

ˆ1

1

0

1

0

1

0

)1(2

,2

1

0

)1(2

,2

1

0

1

0

1

0

)1(2

,2

1

0

)1(2

,2

1

0

1

0

2

,2

















∆
−

∆∆
+

+
















∆
−

∆∆

=
∆

∑ ∑ ∑∑

∑ ∑ ∑∑

∑ ∑

−

=

−

=

−

=







 +

−
−−

=







 +

+
−

−

=

−

=

−

=







 −

+−−

=







 +

+−

−

=

−

=







 +−

M

m

M

m

N

n

N
ln

M
mki

nm
N

n

N
ln

M
mki

nm

M

m

M

m

N

n

N
nl

M
kmi

nm
N

n

N
nl

M
kmi

nm

M

m

N

n

N
ln

M
kmi

nm

e
MN

e
MN

e
MN

e
MN

ev
MN

ππ

ππ

π

ψψ

χχ  (B.16) 

This can be written as 
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 (B.17) 

This simplifies to 

 ,,,, ˆˆˆ nmmnmnnmv ψmχν +=  (B.18) 

with m  and ν  given by (B.15). 

Comparison 

Figure B.1 shows the Helmholtz transformation coefficients 1h  on the 2DVAR spatial frequency grid for the 
continuous boundary conditions (blue curve) and the periodic boundary conditions (red curve, with m=1h ). 
The dots indicate the spatial frequency grid points. Figure B.1 shows that the two boundary conditions yield 
very similar transformation coefficients for low spatial frequencies ( 0≈p ), but differences arise at higher 
frequencies. With periodic boundary conditions the transformation coefficients go to zero at high (positive 
and negative) frequencies, whereas the coefficients with continuous boundary conditions reach their extreme 
value there. The effect of the periodic boundary conditions is similar to that of applying a filter like the 
Hanning filter in an FFT operation: the spectrum is forced to zero at the ends of the interval. Since the 
background contribution to the cost function is calculated in the frequency domain, one may expect that the 
periodic boundary conditions yield smaller values than the continuous ones. This is indeed the case: in a 
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single observation test the background contribution to the cost function at the solution is about 20% smaller 
when using periodic boundary conditions compared to the continuous boundary conditions. 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1   Helmholtz transformation coefficients on the 2DVAR spatial frequency grid for the continuous boundary 
conditions (blue) and the discrete boundary conditions (red). 
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Appendix C   Helmholtz transformation in 
three dimensions 
In three dimensions, any vector field ),,( wvu=V  can be written as the sum of the gradient of a scalar 
potential χ  and the rotation of a vector potential ),,( zyx ΨΨΨ=Ψ  as 

 .ΨV ×∇+∇= χ  (C.1) 

Written out in Cartesian components, the terms in the right hand side of (A.1) read 
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χχχχ eee  (C.2a) 
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with xê , yê , and zê  the unit vectors in the x-, y-, and z-direction, respectively. 

In two dimensions, all z-components vanish. Moreover, the potentials no longer depend on z, so all 
derivatives to z vanish. As a result 
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with the subscript 2 indicating the transition to two dimensions. Note that only zΨ  contributes to the vector 
field. Renaming it to ψ , dropping the subscript, and replacing the general vector field V  by the two 
dimensional wind field ),( vu , one obtains from (C.1) and (C.3) 

 .,
xy
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u
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+
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−
∂
∂

=
ψχψχ  (C.4) 

For a wind field, χ  is referred to as the velocity potential and ψ  as the stream function. 
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Appendix D   Adjoint model 
Suppose we have a cost function J  defined in the spatial domain as a function of a positional increment 
control vector x  as )(xJJ = . Similarly, it can be defined in the frequency domain as a function of a 
spectral increment control vector ξ  as )(ξJJ = . The two representations are connected by the 
unconditioning transformation U according to Uξx = . Note that in the main text the positional increment 
control vector is denoted as xδ . 

The sensitivity of the cost function to changes in x  can be studied by expanding it in a Taylor series around 
a point 0x  and omitting terms of the second and higher order [Errico,1997; Giering and Kaminski, 1998] 

 ,)()( 0 dJJJ += xx  (D.1) 

with 

 .)( 0 xxx dJJdJ xx ⋅∇=−⋅∇=  (D.2) 

This is a scalar product, so (D.2) can be written as 

 ,,, ξUx dJdJdJ xx ∇=∇=  (D.3) 

assuming that ξUx dd = . 

Now the adjoint of U  is defined as the operator *U  that satisfies 

 ,,, 21
*

21 xxUUxx =  (D.4) 

for all 1x  and 2x . In a finite dimensional space, which is the case for the control space (i.e., the space in 
which the control vectors are defined), the adjoint equals the complex conjugate of the transpose, 

 .* TUU =  (D.5) 

Applying this to (D.4) yields 

 .,* ξU dJdJ x∇=  (D.6) 

This can be recognized as the scalar product in the frequency domain. with Jx∇*U  the gradient of J  in the 
frequency domain. Therefore 

 .* JJ x∇=∇ Uξ  (D.7) 
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This gives the relation between the gradients of the cost function in both representations. The gradient of the 
observation term in the 2DVAR cost function is evaluated in the spatial domain, and can be transformed to 
the frequency domain using (D.7). Note that the cost function is invariant under change of domain. 

In chapter 3, equation (3.17) it was shown that the unconditioning transformation reads 

 .2/1
ˆ.ˆ

1
ψχHBU −= F  (D.8) 

From the definition of the adjoint it follows that 

 ( ) ( ) ( ) .*1**2/1
ˆ.ˆ

*2/1
ˆ.ˆ

1* −− == FF HBHBU ψχψχ  (D.9) 

The inverse Fourier transform is defined in appendix A. It is easily shown that ( ) FF =− *1 . The Helmholtz 
transformation involves multiplication of the spectra components with an imaginary factor, which changes 
sign in the adjoint case. The normalization involves multiplication with a real factor. With this, (D.9) can be 
written as 

 .1*2/1
ˆ.ˆ

* −= FHBU ψχ  (D.10) 

Adjoint of the Helmholz transformation 

The adjoint of the Helmholz transformation in Fourier space, *H , can be found from (3.6) by writing it as 
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omitting the arguments of the velocities and the potentials. From (D.11) it easily follows that 
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iπH  (D.12) 

The adjoint transformation reads 
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 (D.13) 

or expanded in components 

 ,ˆ2ˆ2ˆ ldiqtdipd ππχ +=  (D.14a) 

 .ˆ2ˆ2ˆ ldiptdiqd ππψ +−=  (D.14b) 
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Appendix E   Single Observation Analysis 
Basic principles 

Suppose the observation increment is denoted by o , the background increment by b , and the analysis 
increment by a . The cost function can be written as 

 ,)()(
2

2

2

2

BO
bot

abaoJJJ
εε
−

+
−

=+=  (E.1) 

where Oε  stands for the standard deviation of the observation error and Bε that of the background error. 
Equation (E.1) is at a higher level of abstraction than the remainder of this report, but that simplifies the 
derivation. The optimal analysis is obtained by minimizing the total cost function with respect to the 
analysis. At the optimal analysis increment the derivative of the total cost function should be zero, 

 .0
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 (E.2) 

This is satisfied for 
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+
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=  (E.3) 

The optimal analysis increment is just the weighted average of the observation and the background 
increments. For OB εε =  the single observation solution reduces to )(2

1 boa −= . 

Starting with zero background and analysis increments, the only contribution to the initial cost function is 
from the observation part, so it reads 

 .2
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O
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t

oJJ
ε

==  (E.4) 

At the optimal analysis increment it reads (substitute (E.3) into (E.1)) 

 .)()()(
22

2

2

2

2

2

BOBO

fin
t

boabaoJ
εεεε +

−
=

−
+

−
=  (E.5) 

The initial gradient reads 
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The total gradient at the optimal analysis, fin
B

fin
O

fin
t JJJ ∇+∇=∇  equals zero, so  fin

B
fin

O JJ −∇=∇ , and 
therefore  
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 (E.7) 

Since in the incremental approach obo =− , (E.6) and (E.7) can be combined into 
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 (E.8) 

where has been used that (E.6) is equivalent to ini
OO Jo ∇= 2

2
1 ε . Equation (E.8) relates the gradient in the final 

background cost to that of the initial observation cost. According to (3.18) - (3.20), the gradient in the final 
background cost is directly related to the analysis wind components ),(ˆ )( qpnψ  and ),(ˆ )( qpnχ , because in 
terms of the control vector ξ  one has ξξ ⋅=BJ , so ξ2=∇ BJ . This holds during the whole minimisation 
procedure, so it also holds for the final cost function gradient, finfin

BJ ξ2=∇ . With the help of (E.8), the 
final control vector finξ , i.e., the final values of ),(ˆ )( qpnψ  and ),(ˆ )( qpnχ , can be related to the initial 
observation cost function. 

An analytic expression of the single observation analysis can be obtained from the following steps: 
• Start with the gradient of the initial observation cost function; 
• Transform this to the normalized stream function and velocity potential in the spatial frequency domain 

using the adjoint of the unconditioning transformation 1*2/1
ˆ.ˆ

* −= FHBU ψχ  as given by (4.5) and (D.10); 
• Apply relation (E.8) to write this in terms  of the final analysis stream function and velocity potential; 
• Transform this to the analysis wind field with the unconditioning transformation (3.17), 

2/1
ˆ.ˆ

1
ψχHBU −= F . 

Analytic expression for Gaussian structure functions 

Suppose a single wind vector observation ),( 00 lt  is available at the point )0,0(),( =yx . The components of 
the gradient of the observational part of the cost function, denoted as Odt  and Odl , can be obtained from 
(4.10) (or (E.6)) as 
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with ),( yxδ  the Dirac delta function in two dimensional position and ltO εεε ==  the standard deviation of 
the error in the observed wind speed components. The gradient has to be taken with respect to the 
observation increments tδ  and lδ . The delta function appears because the gradient is zero everywhere 
except at (0,0) where the observation is located. In this representation, the observation wind field is 
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considered as a function in two dimensional position space rather than a discrete function on a two 
dimensional grid. The notation Odt and Odl  is introduced to simplify the notation and to keep in line with 
the 2DVAR code in genscat. 

Adjoint unconditioning transformation 

The components of the observation cost function gradient in spatial frequency space, Oud ˆ  and Ovd ˆ , are 
found by applying the adjoint of the inverse Fourier transformation. This just equals the forward Fourier 
transformation (A.1). Due to the delta function, the integrals are easily evaluated, yielding 
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Note that the cost function gradient in the spatial frequency domain is constant. 

The next step is to apply the adjoint of the forward Helmholtz transformation (3.6) to get the gradient 
components of the stream function and the velocity potential Odψ̂  and Odχ̂  as 

 [ ] ,)(4),(ˆ),(ˆ2),(ˆ 002 qtpliqpvdpqpudqiqpd
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ε
ππψ  (E.11a) 
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ε
ππχ  (E.11b) 

To arrive at the gradient components of the normalized stream function and the normalized velocity 
potential, one must multiply with the adjoint of the background error covariance matrix in the spatial 
frequency domain, 2/1

ˆˆψψB  and 2/1
ˆˆχχB . These are real quantities given by (6.5) and (6.6). Setting χψ RRR ==  

and χψ εεε ==B  one readily finds 
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From observation gradient to analysis 

Now the results of chapter 7 can be applied to calculate the analysis. According to (E.8) and the discussion 
following it 

 ,)( 1222
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OBOO
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B JJ ∇+−=∇= −εεεξ  (E.13) 

which translates into 
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From (E.14) and (E.12) one readily finds 
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Now it is possible to transform (E.15a-b) back to the spatial domain. 

Unconditioning transformation 

Multiplying (E.15) with the background error covariance matrix in the spatial frequency domain, 2/1
ˆˆψψB  and 

2/1
ˆˆχχB , yields 
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again setting χψ RRR ==  and χψ εεε ==B . 

Application of the forward Helmholtz transformation (3.6) results in 
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This can be written as 

 [ ] ,)1()12(2),(ˆ )(2
0

2
0

22
0

24
22

2
3 2222 qpR

BO

B eqtpqlptRqpt +−−+−+
+

= πννν
εε

ε
π  (E.18a) 

 [ ] .)12()1(2),(ˆ )(2
0

2
0

22
0

24
22

2
3 2222 qpR

BO

B eqlpqtplRqpl +−+−+−
+

= πννν
εε

ε
π  (E.18b) 

Inverse Fourier transformation (A.2) finally yields 
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where 22 Ra π=  and the integrals are defined as 
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These integrals are calculated in Appendix G. With 22 Ra π=  one obtains from (G.16) 
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This immediately yields the final result for the single observation analysis 
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Remember that we started with the observation ),( 00 lt  at the origin. However, if the observation is at some 
other location, the analytical expression for the single observation analysis is easily obtained from (E.22) by 
a shift in coordinates. 

Special values 

For 0== yx  equation (E.22) reduces to 
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This is the weighted average of observation and the background. If 0→Bε , i.e., if the background is free of 
errors, the analysis increment vanishes. Since the analysis is defined as the “true” wind field minus the 
background, this implies that the true wind field equals the background – which should be the case if the 
background is free of errors. 

If, on the other hand, ∞→Bε , i.e., if the background is completely unreliable and contains no information, 
the analysis increment gets its maximum value and is determined by the observation – the only information 
source at hand. 

If OB εε = , equation (E.23) yields 02
1)0,0( tt =  and 02

1)0,0( ll = . 

General single observation analysis 
In the general case, i.e., for non-Gaussian background error covariances, one can start from (E.11a-b) and 
multiply with the adjoint of the background error covariance matrix in the spatial frequency domain, 2/1

ˆˆψψB  
and 2/1

ˆˆχχB  to obtain 

 ,)(4),(ˆ 2/1
ˆˆ002

)(
ψψε

πψ Bqtpliqpd
O

n
O −−=  (E.24a) 

 ,)(4),(ˆ 2/1
ˆˆ002

)(
χχε

πχ Bqlptiqpd
O

n
O +−=  (E.24b) 

where again the fact has been used that the background error covariances are real, thus self-adjoint. Applying 
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(E.14) to write (E.24) in terms of the analysis yields 
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Multiplying (E.25) with the background error covariance matrix in the spatial frequency domain, 2/1
ˆˆψψB  and 

2/1
ˆˆχχB , and writing χχχψψψ ˆˆˆˆ

ˆ,ˆ BfBf ==  yields 
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Applying the forward Helmholz transformation (3.6) gives 
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The analysis wind fields are obtained by applying the inverse Fourier transformation (A.2) to (E.27) 
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The integrals in (E.28) can be evaluated by noting that 
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from which it follows that 
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Applying (E.30) to (E.28) finally yields 
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Equation (E.31) shows that the single observation analysis is determined by the double derivatives of the 
background error covariances (which are defined in the spatial potential domain), rather than their values. 
For Gaussian error covariances  the spatial extent of the single observation analysis is of the same order of 
magnitude as that of the background error correlations, but in general this needs not be the case. 

Finally, substituting (6.1) into (E.31) yields (E.22). Starting from (6.1a-b) with RRR == χψ , 
2
Btl VV ε== , and 2

2
122 RLL == χψ  one finds 
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with derivatives 
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Substitution of (E.33) in (E.31a) yields 
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which is identical to (E.22a). The equivalence between (E.31b) and (E.22b) can be shown in the same 
manner. 
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Appendix F   Single observation analysis for 
EBECs 

Empirical background error correlations 

It has been shown by Vogelzang and Stoffelen [2011] that empirical background error correlations (EBECs) 
can be derived from O-B covariances under reasonable assumptions. Their results read 

 ,
2

)()(1)(,
2

)()(1)(
χ

χχ
ψ

ψψ rr
a

rRrSr
a

rRrSr +
+=

−
+=  (F.1) 

with 
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where ttr  and llr  are the O-B correlations for the cross-track and along-track wind components, t  and l , 
respectively. 

The parameters ψa  and χa  are determined by the requirement that the EBECs approach zero when r  goes 
to infinity as 
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The length scales ψL  and χL  are  
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Since )1( 22 νψψ −−= La  and 22νχχ La −=  it follows from (F.5) that the divergence to rotation ratio 2ν  is 
given by 
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Note that in the same notation as above the Gaussian background error correlations have the form 
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which agrees with the definitions in chapter 6. 

Derivatives to x and y 

The EBECs (F.1) are functions of the distance r  only. Now for any function )(rF  
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where the prime denotes differentiation to r . From (F.8) 
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Rearranging terms yields 
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Derivatives of the covariances 

According to (6.1) the background error covariances read 

 ,)()1()( 222 rLrf B ψψψψ rεν−=  (F.11a) 

 ,)()( 222 rLrf B χχχχ rεν=  (F.11b) 

with tlB VV ==2ε  and the correlations given by (F.1). The derivatives of the covariances are 
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and (note that )(rI ′  is to be evaluated at the lower limit of (F.3) which introduces a minus sign) 
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Now the corresponding derivatives of the covariances are equal to the derivatives of the correlations (F.12) 
and (F.13) multiplied by the appropriate factor defined in (F.11). 

Analysis 

Substitution of (F.10) to (F.13) in (E.30) yields 
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From (F.4) to (F.6) it follows that 
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so (F.14) simplifies to 
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Double application of ’l Hopital’s rule yields 
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since ( ))()()()()( rrrrrrJ llttlltt rrrr ′+′++=′′  from (F.3). 
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Appendix G   Fourier transforms involving a 
Gaussian function 

Forward Fourier transform 

Let the function ),( yxf  be defined in the spatial domain as a Gaussian function, 

 ,),(
2ra

s
seFyxf −=  (G.1) 

with 222 yxr +=  and sF  and sa  constants. 

Its Fourier transform in the frequency domain reads (see appendix A) 
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The integrals over x  and y  can be evaluated using the relation 
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Some simple algebra yields 
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Inverse Fourier transform 

When deriving an analytical expression for the single observation analysis in Appendix F, the following 
integrals are needed: 
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 ,);,( )(2)(2 22 qypxiqpa
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The integrands are separable in p  and q , so 

 ,);();();,( 02 ayKaxKayxI pp =  (G.6a) 

 ,);();();,( 11 ayKaxKayxI pq =  (G.6b) 
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where 
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The integral K0 

Write (G.7a) as 
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The second term yields zero, since the sine is odd while the Gaussian is even. The first term can be evaluated 
using equation (7.4.6) of Abramowitz and Stegun [1970] and yields 
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The integral K1 
The are several ways that integral 1K  can be evaluated. One way is to split the complex exponential into a 
sine and a cosine, like in (G.8) and do partial integration. A simpler way is to observe that from (G.7a)  
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so that 
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Substitution of (G.9) in the right hand side of (G.11) gives 

 .);(

222/3

1
a
x

xe
a

iaxK
π

π −






−=  (G.12) 

The integral K2 
Double differentiation of (G.7a) yields 
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so that 
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The integrals Ipp, Ipq, and Iqq 
Substitution of (G.9), (G.12) and (G.15) in (G.6) yields 
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Appendix H Minimalisation step size 
The minimalization is performed by routine LBFGS [Liu and Nocedal, 1989]. The algorithm adapts its step 
size, but the size of the first step must be given. The minimalization starts at the point 0=ξ . At this point 
the cost function value )0(f  and its gradient )0(g  are known. 

Suppose now that the cost function is a parabola in the plane defined by the gradient direction and the 
minimum. The cost function then reads 

 ,)( 2 cbaf ++= ξξξ  (H.1) 

with gradient 

 .2)()( ba
d

dfg +== ξ
ξ
ξξ  (H.2) 

The minimum is located at minξξ =  where the gradient equals zero. Equation (H.2) immediately yields 

 .
2min a
b

−=ξ  (H.3) 

Substitution of (H.3) in (H.1) gives the value of the cost function at the minimum 

 .
4

)(
2

min a
bcf −=ξ  (H.4) 

The value of minξ  from (H.3) is expected to give a good first guess for the initial step size. Since the 
minimalization starts at 0=ξ , (H.1) and (H.2) readily yield 

 .)0(,)0( gbfc ==  (H.5) 

One extra relation is needed to fix the coefficients of the parabola. This needs some additional assumption. 
The Single Observation Analysis shows that  

 .)0()( 2
1

min ff =ξ  (H.6) 

In practical cases, the minimum value of the cost function turns out to be 25% to 90% of its initial value. 
Substitution of (H.4) and (H.5) into (H.6) gives 

 .
)0(2
)0(2

f
ga =  (H.7) 

Substitution of (H.7) into Equation (H.3) gives the final result 
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 ,
)0(
)0(

min g
f

==∆ ξξ  (H.8) 

for the initial step size. 2DVAR obtains the best results when the step size in (H.8) is multiplied by a factor 
of 30. 
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